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Abstract

Reliable exploitation of software vulnerabilities has
continued to become more difficult as formidable mit-
igations have been established and are now included
by default with most modern operating systems. Fu-
ture exploitation of software vulnerabilities will rely
on either discovering ways to circumvent these miti-
gations or uncovering flaws that are not adequately
protected. Since the majority of the mitigations that
exist today lack universal bypass techniques, it has
become more fruitful to take the latter approach. It
is in this vein that this paper introduces the concept
of exploitation properties and describes how they can
be used to better understand the exploitability of a
system irrespective of a particular vulnerability. Per-
ceived exploitability is of utmost importance to both
an attacker and to a defender given the presence of
modern mitigations. The ANI vulnerability (MS07-
017) is used to help illustrate these points by act-
ing as a simple example of a vulnerability that may
have been more easily identified as code that should
have received additional scrutiny by taking exploita-
tion properties into consideration.

1 Introduction

Modern exploit mitigations have become formidable
opponents with respect to the effect they have on
reliable exploitation. Some of the more substantial
modern mitigations include GuardStack (GS), Safe-
SEH, DEP (NX), ASLR, pointer encoding, and var-
ious heap improvements[8, 9, 10, 15, 24, 3, 4]. The
fact that there have been very few public exploits
that have been able to universally bypass all of these
mitigations at once is a testament to the resilience of
these techniques working in concert with one another.
It is obvious that the absence of a given mitigation
directly contributes to the exploitability of the asso-
ciated code. Likewise, it is also well known that most
mitigations have situations in which they will offer lit-
tle to no protection[5, 16, 18, 20, 2, 4]. For instance,
in certain cases, it may be possible to perform a par-

tial overwrite on Windows Vista to defeat ASLR due
to the fact that only 15 bits of most 32-bit addresses
may be affected by randomization[2, 17]. Other miti-
gations also have situations where they may not pro-
vide adequate coverage.

Given the fact that the majority of mitigations have
known limitations, it makes sense to consider where
this information might be useful. In the field of
program analysis, whether it be manual, static, or
dynamic, the question of scoping is often pertinent.
This question typically revolves around figuring out
what areas of code should be reviewed and what
precedence, if any, should be assigned to different re-
gions. Typical approaches taken to accomplish this
often involve identifying code that straddles a trust
boundary or performs complex operations reachable
from a trust boundary. However, depending on one’s
perspective, this type of approach is insufficient in
the face of modern mitigations because it may result
in areas of code being reviewed that are adequately
protected by all mitigations.

To help address this perceived deficiency, this paper
introduces the concept of exploitation properties and
describes how they can be used to provide a better
understanding of the exploitability of a system if a
vulnerability is found to be present. Regions of code
that are found to have a number of distinct exploita-
tion properties may be more interesting from an ex-
ploitation standpoint and therefore may warrant ad-
ditional scrutiny from a program analysis perspec-
tive. The use of exploitation properties may benefit
both an attacker and a defender. For example, com-
panies may wish to perform targeted reviews on areas
of code that may be more trivially exploited in an ef-
fort to prevent reliable exploits from being released
in the future. Likewise, an attacker searching for a
vulnerability may wish to avoid auditing regions of
code that are likely to be more difficult to exploit.

Exploitation properties represent additional criteria
that can be used when attempting to better under-
stand the security aspects of a program. Annotating
regions of code with exploitation properties makes it
possible to use set unions and intersections to identify
the subset of interesting regions of code for a partic-
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ular analysis problem. For example, an attacker may
wish to determine the regions of code that may per-
mit the use of traditional stack-based buffer overflow
techniques as well as permitting a partial overwrite
of a return address in order to defeat ASLR. Using
these two exploitation properties as criteria, a nar-
rowed subset can be produced which contains only
those regions which meet both criteria by intersecting
those regions that have both exploitation properties.
For the purpose of this paper, the term narrowing
is not used in the strict mathematical sense; rather,
this paper uses narrowing to describe the process of
constraining the scope of analysis through the use of
specific criteria.

The concept of using automated analysis as a precur-
sor to more strenuous program analysis is certainly
not new. There have been many tools ranging from
the simple detection of calls to strcpy to much more
sophisticated forms of static analysis. Still, the use of
exploitation properties can be seen as an additional
set of data points which may be useful in the context
of program analysis given the hypothesis that most
reliably exploitable security vulnerabilities are being
pushed into areas of code that are less affected by
mitigations.

The concept of exploitation properties is presented
as follows. §2 categorizes and defines a limited num-
ber of concrete exploitation properties. §3 provides a
concrete example of using exploitation properties to
help identify the function that contained the ANI vul-
nerability. §4 describes some potential ways in which
exploitation properties can be applied. §5 gives a
brief description of future work involving exploitation
properties.

2 Exploitation Properties

Exploitation properties describe the ease with which
an arbitrary vulnerability might be exploited. An un-
derstanding of a system’s perceived exploitability can
provide useful insights when attempting to establish

the risk factors associated with it1. It is important to
note that exploitation properties do not provide any
indication that a vulnerability exists; instead, they
are only meant to convey information about how eas-
ily a vulnerability could be exploited. The concept
of an exploitation property can be broken into differ-
ent categories which are tied to the configuration or
context that the property is associated with. Exam-
ples of these categories include platforms, processes,
binary modules, functions, and so on.

The following subsections provide concrete examples
to better illustrate the concept of an exploitation
property. These examples are given by showing what
implications a property has with respect to exploita-
tion as well as how a property might be derived. It
should be noted that the examples given in this pa-
per do not represent a complete, exhaustive set of
exploitation properties.

2.1 Platform Properties

Exploitation properties associated with a platform
are meant to illustrate how easily a vulnerability
may be exploited when a given platform configura-
tion, such as the operating system or architecture, is
used. For example, Windows 2000 does not include
support for enforcing non-executable pages. This im-
plies that any vulnerability found within an applica-
tion that runs in the context of the Windows 2000
platform may be exploited more easily. An under-
standing of exploitation properties that are associ-
ated with a platform may be useful when attempting
to assess the risk of applications that might run on
multiple platforms. There are many other examples
of exploitation properties that are tied to platforms.
In order to limit the scope of this document, platform
exploitation properties are not discussed at length.

1An example of this can be seen in threat modeling where
the DREAD model of classifying risk includes a high-level eval-
uation of exploitability as one of the risk factors[14]
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2.2 Process Properties

Process exploitation properties carry some informa-
tion about how easily vulnerabilities found within the
context of a running process may be exploited. For
example, Internet Explorer running on 32-bit ver-
sions of Windows Vista do not make use of hardware-
enforced DEP (NX) by default. This means that
any vulnerabilities found within code that runs in
the context of Internet Explorer will not be protected
by non-executable regions. An understanding of ex-
ploitation properties that are associated with a pro-
cess context can help to provide a better understand-
ing of the risks associated with code that may run in
the context of a given process. In order to limit the
scope of this document, process exploitation proper-
ties are not discussed at length.

2.3 Module Properties

Module exploitation properties are used to illustrate
the effect that a particular binary module has on ease
of exploitation. This category of properties is use-
ful when attempting to identify binaries that may be
more easily exploited if a vulnerability is found within
them or in code that depends on them. This subsec-
tion describes two examples of module exploitation
properties.

2.3.1 No Support for ASLR

Windows Vista was the first major release of Win-
dows to include a built-in implementation of Address
Space Layout Randomization (ASLR)[15, 24]. In or-
der to head off potential application compatibility is-
sues, Microsoft chose to make ASLR an opt-in fea-
ture by requiring binaries to be compiled with a new
compiler switch (/dynamicbase)[21]. This compiler
switch is responsible for setting a bit (0x40) in the
DllCharacteristics that are defined within a bi-
nary. If this bit is set, the Windows kernel will at-
tempt to randomize the base address of the binary
when it is mapped into memory the first time. If the

bit is not set, the binary will not have its base address
randomized, although it could be relocated in mem-
ory if the binary’s preferred region is already occupied
by another allocation. As such, any binary that does
not support ASLR may be mapped at a predictable
location within a process address space at execution
time. This can allow an attacker to make assump-
tions about the address space which may make ex-
ploitation easier if a vulnerability is found within any
code that is mapped into the same address space as
the module of interest.

2.3.2 No Support for SafeSEH

With Visual Studio 2003, Microsoft introduced a
compile-time change known as SafeSEH which at-
tempts to act as a mitigation for the SEH overwrite
attack vector[5, 9]. SafeSEH works by adding a static
list of known good exception handlers that are con-
sidered valid as metadata within a given binary. Bi-
naries that support SafeSEH allow the exception dis-
patcher to perform additional checks when dispatch-
ing exceptions. The most important check involves
determining if an exception handler that is found to
exist within the mapped region of a given binary is
actually considered to be one of the safe exception
handlers. If the exception handler is not a safe ex-
ception handler, the exception dispatcher can take
steps to prevent it from being called. This behavior
works to mitigate the potential exploitation vector.

In order to communicate this information to the ex-
ception dispatcher, modern PE files include fields in
the load config data directory which hold the offset
of the safe exception handler table and the number
of elements found within the table. The load config
data directory contains meta data that is useful to
the dynamic loader such as information about safe ex-
ception handlers, the module’s global security cookie
address, and so on[13]. The following output from
dumpbin.exe illustrates what this might look like:

310751E0 Safe Exception Handler Table

1 Safe Exception Handler Count
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Safe Exception Handler Table

Address

--------

310357D1 __except_handler4

Unfortunately, as with ASLR, the benefits offered by
SafeSEH are not complete unless every binary that
is loaded into an address space has been compiled
to make use of SafeSEH. If a binary has not been
compiled to make use of SafeSEH, an attacker may
be able to use any address found within the binary’s
memory mapping as an exception handler in conjunc-
tion with an SEH overwrite.

2.4 Function Properties

Function exploitation properties convey information
about how a function contributes to the exploitabil-
ity of an application. For example, a function might
make it possible to use certain exploitation tech-
niques that might otherwise be prevented if mitiga-
tions were present. Alternatively, a function might
simply assist in the exploitation process. Func-
tion exploitation properties are especially useful be-
cause they provide more detailed information than
exploitation properties that are derived from the plat-
form, process, or module context.

2.4.1 Absence of GuardStack

The GuardStack (GS) support included with versions
of the Microsoft Visual Studio compiler since 2002
offers a compile-time mitigation to traditional stack-
based buffer overflows[23]. It supports this through
a combination of a random canary inserted into a
stack frame at runtime and an intelligent stack frame
layout algorithm. The random canary is pushed onto
the stack when a function is called and then popped
off the stack and validated prior to function return.
If the canary does not match the expected value, it is
assumed that a stack-based buffer overflow occurred
and that the process should be terminated.

Since the initial release of GS support a number of
techniques have been described that could be used
to bypass or weaken it[5, 16, 20]. While these tech-
niques were at one time useful or have not yet been
fully realized, the author assumes that most would
agree that the GS implementation provided by the
most recent compiler is robust (with the exception of
SEH). There is currently no publicly known universal
bypass technique for GS that the author is aware of.
Given this assumption, functions that are protected
by GS become less interesting from the standpoint
of identifying stack-based buffer overflows. On the
other hand, functions that are not protected by GS
can instantly be qualified as interesting targets for re-
view. This is especially true with binaries that have
been compiled with GS support but contain a num-
ber of functions that the compiler has chosen not to
compile with GS protections2.

As previous research has illustrated[27], it is possible
to identify functions that have not been compiled to
use GS through the use of simple static analysis tools.
It is also possible to further refine the approaches
described in previous research if one has symbols
and one assumes that the most recent compiler was
used. This can be accomplished by analyzing the
call graph of an executable and noting the set of
functions that do not call security check cookie.
Considered another way, the same set of functions
can be identified by taking the set of all functions
contained within a binary less the subset that call
security check cookie. The set of functions that

is identified by either approach can be annotated with
an exploitation property that indicates that they may
contain stack-based buffer overflows that would not
be hindered by GS.

It may also be prudent to take the compiler ver-
sion that was used into consideration when ana-
lyzing binaries. This is important due to the fact
that older versions of the compiler used a GS imple-
mentation that could be trivially defeated in certain
circumstances[16]. For example, previous versions of

2This choice is made by taking into account certain condi-
tions such as the presence or absence of local variables that are
declared as fixed-size arrays
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GS did not layout the stack frame in a manner that
would prevent an attacker from overwriting other lo-
cal variables and function arguments. In scenarios
where this occurred and an overwritten local variable
or parameter was dereferenced (such as by invoking a
function pointer), the mitigation offered by GS would
be meaningless. Thus, a secondary exploitation prop-
erty could involve identifying functions where attacks
such as the one described above could be possible.

2.4.2 Partial Overwrite Feasibility

One of the unique consequences of implementing Ad-
dress Space Layout Randomization (ASLR) on Win-
dows is the limitation that the system allocation
granularity imposes on the number of bits that can
be randomized within most memory allocations. In
particular, the allocation granularity used by Win-
dows enforces strict 16-page alignment for the base
addresses of most memory mappings in user-mode.
This restriction means that it is only possible to intro-
duce entropy into the low 15 bits of the high-order 16
bits of a 32-bit memory mapping[17]3. The low-order
16 bits remain unchanged relative to the high-order
bits. This caveat means that it may be possible to
perform a partial overwrite of an address and thus by-
pass the security features offered by ASLR[2]. How-
ever, the ability to perform a partial overwrite also
relies on the presence of useful code or data within
a region that is relative to the address that is being
overwritten.

To visualize how this type of information might be
useful, consider a scenario where an attacker is per-
forming a partial overwrite of a return address on
the stack. In this situation, it is often necessary for
one or more useful opcodes to be present at an ad-
dress that is 16-page relative to the return address.
For example, consider a scenario where the function
f may have a vulnerability that would permit a par-
tial overwrite. In this example, f is called by h and

3While this may sound odd at first glance, the high-order
two bits are not randomized due to the divide between kernel
and user-mode. This assumes that a machine is booted without
/3GB.

y. In order to permit the use of a partial overwrite,
a useful opcode must be found within the same 16-
page aligned region that either h or y reside on. If
a useful opcode is present, an exploitation property
can be attached to f in order to indicate that a par-
tial overwrite may be feasible due to the presence of a
useful opcode within the same 16-page aligned region
as either h or y. For example, consider the following
pseudo-disassembly illustrating a case where the call
f instruction in h is on the same 16-page region as a
useful opcode:

... useful jmp on same 16-page region 0x14c1XXXX

0x14c1fc04 jmp esp

... entry point to h()

0x14c1a910 push ebp

0x14c1a911 mov ebp, esp

0x14c1a914 call f

... entry point to y(), not on same 16-page region

0x137f44c8 push ebp

While this captures the basic concept, a better ap-
proach might be to view a binary in a different
way. For example, consider the following approach
to drawing the same conclusion: for each code re-
gion that contains a useful opcode, identify the sub-
set of functions that are called from call sites within
the same 16-page aligned region as the useful opcode.
This has the effect of annotating all of the child func-
tions that could potentially leverage a partial over-
write of the return address with respect to a partic-
ular collection of opcodes.

One important point that must be made about this
exploitation property is that is entirely dependent
upon the definition of ”useful code or data”. Ex-
ploitation is very much an art and it goes without
saying that attempting to constrain the approaches
that an attacker might make use of is likely to be folly.
However, defining a known-set of useful opcodes and
using that set as a base with which to draw the above
conclusion can be said to be better than not doing so
at all.
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2.4.3 Function or Parent Registers an Excep-
tion Handler

One of the unique exploitation vectors that exists in
32-bit programs that run on Windows is known as an
SEH overwrite[5]. An SEH overwrite makes it pos-
sible to gain control of execution flow by overwriting
an exception registration record on the stack. From
an exploitation perspective, the act of registering an
exception handler within a function opens up the pos-
sibility of making use of an SEH overwrite. Since ex-
ception handlers are chained, the act of registering
an exception handler also implicates any functions
that are children of a function that registers the ex-
ception handler. This makes it possible to define an
exploitation property that illustrates the possibility
of an SEH overwrite being abused within the scope
of a specific set of functions. Detecting this property
can be as simple as signaturing the compiler gener-
ated code that is used to generate and register an
exception handler within a function. An example of
two functions, f and g, that would meet this criteria
can be seen below:

void f() {

__try {

g();

} __except(EXCEPTION_EXECUTE_HANDLER) {

}

}

void g() {

...

}

In addition to this information being useful from an
SEH overwrite perspective, it may also benefit an at-
tacker in situations where an exception handler sim-
ply swallows any exceptions that are dispatched with-
out crashing the process[1]. In the example given
above, any exception that occurs in the context of g
will be swallowed by f without necessarily crashing
the process. This behavior may allow an attacker to
retry their exploitation attempt multiple times, thus
enabling a bruteforce attack that would otherwise not
be feasible. This can make defeating ASLR more fea-
sible.

2.4.4 Function is an Exception Handler

The introduction of SafeSEH as a modern compile-
time mitigation has caused the particulars of how ex-
ception handlers are implemented to become more in-
teresting. This has to do with the fact that SafeSEH
restricts the set of exception handlers that may be
called by the exception dispatcher to those that are
specified as being valid within the scope of a given
binary. As discussed previously in this paper, Safe-
SEH prevents traditional SEH overwrites from being
able to use any address as the overwritten excep-
tion handler. While this is effective in its primary
intent, there is still the possibility that a valid ex-
ception handler can be abused to make exploitation
more feasible[1]. This scenario is restricted to EH3
and prior exception handlers as EH4 includes a check
of a cookie before dispatching exceptions. As such,
it may be useful to flag the regions of code that are
associated with EH3 and prior exception handlers,
including language-specific exception handlers, as be-
ing potentially interesting from an exploitation per-
spective.

Unfortunately, as with ASLR, the benefits offered by
SafeSEH are not complete unless every binary that
is loaded into a process address space has been com-
piled to make use of SafeSEH. If a binary has not
been compiled to make use of SafeSEH, an attacker
may be able to use any address found within the bi-
nary’s memory mapping as an exception handler in
the context of an SEH overwrite. This may make
exploitation more feasible.

3 Case Study: MS07-017

The animated cursor (ANI) vulnerability was discov-
ered by Alexander Sotirov in late 2006 and patched
by Microsoft with the MS07-017 critical update in
April, 2007 . Apart from being a client-side vulner-
ability that was exposed through web-browsers and
other mediums, the ANI vulnerability was one of the
first notable security issues that affected Windows
Vista. It was notable due to the simple fact that
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even though Microsoft had touted Windows Vista as
being the most secure operating system to date, the
exploits that were released for the ANI vulnerability
were very reliable. These exploits were able to ig-
nore or defeat the protections offered by mitigations
such as GS, DEP, and even Vista’s newest mitigation:
ASLR.

To better understand how this was possible it is im-
portant to dive deeper into the details of the vul-
nerability itself. §3.1 gives a brief description of the
ANI vulnerability and some of the techniques that
were used to successfully exploit it. Following this
description, §3.2 illustrates how exploitation proper-
ties, in combination with another class of properties,
can be used to detect functions that may contain vul-
nerabilities similar to the ANI vulnerability. This is
meant to help illustrate the perceived benefits of ap-
plying the concept of exploitation properties to aide
in the process of identifying regions of code that may
deserve additional scrutiny based on their perceived
exploitability.

3.1 Background

While the ANI vulnerability was certainly unique, it
was not the first time the animated cursor code was
found to have a security issue. Microsoft patched
an issue that was almost exactly the same as MS07-
017 with MS05-002 roughly two years prior[7]. In
both cases, the underlying security issue was related
to a failure to properly validate input that was de-
rived from the contents of an animated cursor file.
Alexander Sotirov provided much of the initial re-
search on the ANI vulnerability and also gave an ex-
cellent write-up to its effect[22]. This paper will only
attempt to highlight the flaw.

The vulnerability itself was found in
user32!LoadAniIcon which is responsible for
processing a number of different chunks that may
be contained within an animated cursor file. Each
chunk is a TLV (Type-Length-Value) as described
by the following structure4:

4Copied from Sotirov’s write-up with permission

struct ANIChunk

{

char tag[4]; // ASCII tag

DWORD size; // length of data in bytes

char data[size]; // variable sized data

}

Keeping this structure in mind, the flaw itself can be
seen in the abbreviated pseudo-code below as modi-
fied slightly from Sotirov’s original write-up:

01: int LoadAniIcon(struct MappedFile* file, ...) {

02: struct ANIChunk chunk;

03: struct ANIHeader header; // 36 byte structure

04: while (1) {

05: // read the first 8 bytes of the chunk

06: ReadTag(file, &chunk);

07: switch (chunk.tag) {

08: case ’anih’:

09: // read chunk.size bytes into header

10: ReadChunk(file, &chunk, &header);

On line 6, the chunk header is read into the lo-
cal variable chunk using ReadTag which populates
the chunk’s tag and size fields. If the chunk’s
tag is equal to ’anih’, the data associated with
the chunk is read into the header local variable us-
ing ReadChunk on line 10. The problem is that
ReadChunk uses the size field of the chunk as the
amount of data to read from the file. Since header is
a fixed-size (36 byte) data structure and the chunk’s
size can be variable, a trivial stack-based buffer over-
flow may occur if more than 36 bytes are specified as
the chunk size. In terms of the vulnerability, that’s
all there is to it, but the implications from an ex-
ploitation perspective are where things start to get
interesting.

When attempting to exploit this vulnerability it may
at first appear that all attempts to do so would be
futile. Given Vista’s security push, an attacker would
be justified in thinking that surely the LoadAniIcon
function is protected by a GS cookie. This point is
especially justified considering the majority of all bi-
naries shipped with Windows Vista have been com-
piled with GS enabled[27]. However, there are indeed
circumstances where the compiler will choose to not
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enable GS for a specific function. As chance would
have it, the compiler chose not to enable GS for the
LoadAniIcon function because of the simple fact that
it does not contain any characteristics that would
suggest that a stack-based buffer overflow might be
possible (such as the use of stack-allocated arrays).
This means that an attacker is able to make use of ex-
ploitation techniques that are associated with tradi-
tional stack-based buffer overflows. While this drasti-
cally increases the chances of being able to produce a
reliable exploit, there are still other mitigations that
are of potential concern.

Another mitigation that might be concerning in most
circumstances is hardware-enforced DEP (NX). This
would generally prevent an attacker from being able
to run arbitrary code within regions that are not
marked as executable (such as the stack and the
heap). However, as fate would have it, Internet
Explorer is configured to not run with DEP en-
abled. This immediately removes this concern from
the equation for exploits that attempt to trigger the
ANI vulnerability through Internet Explorer. With
DEP out of the picture, ASLR becomes a weakened
but still potentially significant hurdle.

While it may appear that ASLR would be challenging
to defeat in most circumstances, this particular vul-
nerability provides an example of two different ways
in which ASLR can be bypassed. The simplest ap-
proach, as taken by Sotirov, involves making use of
the fact that Internet Explorer is not compiled with
support for ASLR and therefore can be found at
a fixed address within the address space. This al-
lows an attacker to make use of opcodes contained
within iexplore.exe’s memory mapping. A second
approach, as taken by the author, involves using a
partial overwrite to ignore the effects of ASLR com-
pletely. The details relating to how a partial over-
write works were explained in §2.4.2. In either case,
an attacker is able to reliably defeat Vista’s ASLR.

To compound the problem, the particulars of the con-
text in which this vulnerability occur make it easier
to exploit even without the presence of mitigations.
This improved reliability comes from the fact that
the LoadAniIcon function is wrapped in an excep-

tion handling context that simply swallows excep-
tions that are encountered. This makes it possible
for an exploit to fail without actually crashing the
process, thus allowing the attacker to try multiple
times without having to worry about making a mis-
take that crashes the process. When all is said and
done, the simplicity of the vulnerability and the ease
with which mitigations could be bypassed are what
lead to the ANI vulnerability being quite unique.
Given the fact that this vulnerability can be so easily
exploited, it is prudent to describe how it could have
been detected as being a high risk function.

3.2 Detection

The ease of exploitability associated with the ANI
vulnerability makes it an obvious candidate for study
with respect to the exploitation properties that have
been described in this paper. It should be possi-
ble to use extremely simple criteria to accomplish
two things. First, the criteria must identify the
LoadAniIcon function. Second, the criteria should be
unique enough to limit the size of the narrowed sub-
set. Reducing the subset size is beneficial as it may
permit the use of more complex program analysis
tools which can further constrain or explicitly identify
instances of vulnerabilities. Determining the specific
criteria that is needed to identify the LoadAniIcon
function can help illustrate how one can make use of
exploitation properties. Given the description of the
ANI vulnerability, one can easily deduce some of the
more interesting properties that it has.

An exploitation property that one might immediately
observe is that the LoadAniIcon function does not
make use of GS (§2.4.1). This makes it possible to
define criteria which states that only functions that
have not been compiled with GS should be consid-
ered. Functions that have been compiled with GS
are inherently less interesting for the purpose of this
exercise due to the fact that they are less likely to
contain exploitable vulnerabilities.

A second property that the ANI vulnerability had
with regard to exploitation was that it was possible
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for an attacker to make use of a partial overwrite to
defeat ASLR. The exploitation property described in
§2.4.2 illustrates how one can make this determina-
tion statically. In the case of the ANI vulnerability, a
partial overwrite can be performed by making use of
a jmp [ebx] that is located within the same 16-page
aligned region as the caller of LoadAniIcon. Thus,
any functions that could potentially make use of a
partial overwrite can be used as additional criteria.

At this point, a subset can be produced that is con-
strained to the regions of code that are annotated
with the GS and partial overwrite exploitation prop-
erties. It is possible to further refine the set of func-
tions that should ultimately be considered by study-
ing the form that the ANI vulnerability took. The
first point to note is that the stack-based buffer over-
flow occurred when writing beyond the bounds of a
struct that was allocated on the stack. Further-
more, the overflow did not actually occur in the im-
mediate context of the LoadAniIcon itself. Instead,
the overflow was triggered by passing a pointer to the
stack-allocated struct as a parameter when calling
the function ReadChunk.

Based on these data points it is possible to define a
third criteria. In this case, the third criteria is not an
exploitation property but is instead an example of a
vulnerability property. While not discussed in detail
in this paper, many examples of vulnerability prop-
erties exist, though perhaps not categorized as such.
A vulnerability property can be thought of as an an-
notation that illustrates whether or not a region of
code has a form that is similar to that seen in vulner-
abilities or has the potential of being a vulnerability.
The complexity of a vulnerability property, as with
the complexity of an exploitation property, can range
from highly sophisticated to very simplistic.

For the purpose of this paper, a vulnerability prop-
erty can be used that is very simple and imprecise but
nevertheless effective at further narrowing the set of
functions that should be reviewed. This property is
based on whether or not a function passes a pointer
to a stack-allocated variable as a parameter to a child
function. This property is directly derived from the
general form that the ANI vulnerability takes. At a

minimum, a region of code that matches this form
suggests that a vulnerability could be present.

Using these three properties, it should be possible
to easily identify both the function that contains
the ANI vulnerability as well as other functions that
could contain similar vulnerabilities. However, it is
important to note that this process does not produce
functions that definitely have vulnerabilities. This
can be plainly seen by the fact that both the vulner-
able and fixed versions of the LoadAniIcon should
be detected by the criteria described above. While
this may seem to run counter to the purposes of this
paper, it is important for the reader to remember
that the goal of using these exploitation properties
is not to identify specific instances of vulnerabilities.
Instead, the goal is to identify regions of code that
might warrant additional scrutiny due to the relative
ease with which a vulnerability could be exploited if
one is found to be present.

3.3 Test Case

The author developed an analysis tool as an extension
to Microsoft’s Phoenix framework in order to test the
ideas described in this paper[12]. Unfortunately, the
current release (July 2007 SDK) of Phoenix requires
private symbol information for native binaries. This
limitation prevented the author from being able to
run the analysis tool across the vulnerable version of
user32.dll. In lieu of this ability, the author chose
to generate a binary containing test cases that closely
mirror the form of the function containing the ANI
vulnerability.

Using these test cases, the author used the features
provided by the analysis tool to determine the ex-
ploitation and vulnerability properties described in
the previous section and to identify the resulting sub-
set of functions meeting all criteria. This was accom-
plished by first attempting to identify the subset of
functions that do not contain GS within the scope
of the target binary. After identifying the subset
of functions without GS, a second subset was taken
which consists of the functions that pass a pointer
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to a stack-allocated local variable as a parameter to
a child routine. This was accomplished by using
Phoenix’s static single assignment (SSA) and alias
implementations to collect the requisite data flow
information[12, 25]. Using this data flow information,
it is possible to perform backwards data flow analy-
sis to determine the potential storage location of the
parameter being passed at each point along a given
data flow path starting from the operand associated
with a parameter at a call site. The analysis termi-
nates either when a fixed point is reached or when
it is determined that a pointer to a stack-allocated
variable could be passed as the parameter.

While the previous section described the potential
for using the partial overwrite exploitation property
to detect the function containing the ANI vulnerabil-
ity, it is not possible to create a meaningful parallel
between the test binary and that of the ANI vulner-
ability. This is due in part to the fact that while it
would certainly be possible to artificially place a use-
ful opcode at a specific location in the test binary,
it would not add any value beyond showing that it
is possible to detect useful opcodes within the same
16-page aligned region as the caller of a given func-
tion. The author feels that this point is somewhat
moot given the fact that it has already been proven
that a partial overwrite can be used with the ANI
vulnerability[6]. The only additional benefit that it
could offer in this case would be to help further con-
strain the resultant set size. However, without being
able to run this analysis against the vulnerable ver-
sion of user32.dll, it is not possible to draw mean-
ingful conclusions at this point in time.

3.4 Results

The results of running the analysis tool against the
test binary produced the expected behavior. To il-
lustrate this, it is helpful to consider a sampling of
the functions that were analyzed. The following func-
tions have a form that is similar to the ANI vulner-
ability. These functions also match the criteria de-
scribed in the previous subsection. Specifically, these
functions do not make use of GS and pass a pointer

to a stack-allocated local variable (var) to a child
function:

int tc_df_pass_local_ptr_to_callee() {

int var;

tc_df_pass_local_ptr_to_callee_func(&var);

return 0;

}

int tc_df_pass_local_ptr_to_callee_alias() {

int var;

int *p = &var;

tc_df_pass_local_ptr_to_callee_func(p);

return 0;

}

int tc_df_pass_local_ptr_to_callee_alias_struct(

struct _foo *foo) {

int var;

foo->ptr = &var;

return tc_df_pass_local_ptr_to_callee_func(

foo->ptr);

return 0;

}

Additionally, a handful of different test functions
were also included in the target binary in an effort
to ensure that other scenarios were not improperly
detected as matching the criteria. Some examples of
these functions include:

int tc_df_pass_local_to_callee_alias() {

int var = 2;

int p = var;

tc_df_pass_local_to_callee_func(p);

return 0;

}

int tc_df_pass_local_to_callee_deref() {

int var = 2;

int *p = &var;

tc_df_pass_local_to_callee_func(*p);

return 0;

}

int tc_df_pass_heap_ptr_to_callee(struct _foo *foo) {

tc_df_pass_local_ptr_to_callee_func(&foo->val);

return 0;

}

When running the analysis tool against the target
binary, the following output is shown:

>PhaseRunner.exe detectani.xml dfa.exe

Running phase: ANI Detection ... 1 target(s)
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Displaying 3 normalizables at the

ProgramElement.Method granularity...

00001: dfa!tc_df_pass_local_ptr_to_callee_alias

00002: dfa!tc_df_pass_local_ptr_to_callee

00003: dfa!tc_df_pass_local_ptr_to_callee_alias_struct

While this unfortunately does not prove that these
techniques could be used to identify the function con-
taining the ANI vulnerability, it does nevertheless
hint at the potential for detecting the function con-
taining the ANI vulnerability using its suggested ex-
ploitation and vulnerability properties. As an side,
another interesting way in which this type of de-
tection can be accomplished is through the use of
Language Integrated Queries (LINQ) which are now
supported in Visual Studio 2008[11]. For instance,
a simple LINQ expression for the above narrowing
operation can be expressed as:

var matches =
from
Method method in engine.GetScopeMethods()

where
!method.IsGuardStackEnabled() &&
method.IsPassingStackLocalPtrToChild()

select method;

foreach (var method in matches)
Console.WriteLine("{0} matches", method);

4 Potential Uses

Program analysis is one area that may benefit from
the use of exploitation properties. In particular, an
auditor can make use of exploitation properties to
assist in the process of identifying regions of code
that should be audited more closely or with greater
precedence. This determination can be made by us-
ing exploitation properties to understand the ease of
exploitation associated with specific binaries or func-
tions. By combining this information with other data
that is collected either manually or automatically, an

auditor can get a better understanding of the secu-
rity aspects that are associated with a system. This
is beneficial both to an attacker and a defender. An
attacker can identify regions of code that would be
easier to exploit and thus devote more time to audit-
ing those regions. Likewise, a defender can use this
information to the same extent but for different pur-
poses. This type of information is especially useful to
a defender who needs to balance the cost associated
with performing security reviews because it should of-
fer a better understanding of what the business cost
might be if a vulnerability is found in a region of code.
This cost can be derived from the negative publicity
and response effort needed to cope with a flaw that is
found publicly in a region of code that is widely ex-
ploited. For example, consider some of the Windows
flaws that have lead to wormable issues and the cost
they have had relative to other issues.

Exploitation properties may also benefit the security
community by helping to identify ways in which fu-
ture mitigations can be applied. This would involve
analyzing regions of code that could be more easily
exploited in an effort to determine what other forms
of mitigations could help to protect these regions, if
any. This information could be fed back to the com-
piler to make it possible for mitigations to be enabled
that might otherwise be disabled by default. For ex-
ample, a function that by default would not have GS
but is subsequently found to be highly exploitable
may benefit from having the compiler insert GS.

5 Future Work

While this paper has defined exploitation properties
and described a handful of concrete examples, it has
not attempted to formally define the correlation be-
tween exploitation properties and the exploitation
techniques they are associated with. Future research
will attempt to concretely define this relationship as
it should lead to a better understanding of the vari-
ables that permit the use of various exploitation tech-
niques. Using more formal definitions of exploitation
properties, a larger scale case study can be completed
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which collects data about the effect of using exploita-
tion properties to improve program understanding for
a variety of purposes. The author views exploitation
properties as being one component in a larger model.
This larger model could be used to join major areas
of study within computer security including attack
surface analysis, vulnerability analysis, and exploita-
tion analysis to form a more complete understanding
of the true risks associated with a system.

6 Conclusion

This paper has introduced the general concept of ex-
ploitation properties and described how they can be
used to better understand the exploitability of a sys-
tem. The purpose of an exploitation property is to
help convey the ease with which a vulnerability might
be exploited if one is found to be present. Exploita-
tion properties can be broken down into different cat-
egories based on the configuration or context that a
given property is associated from. These categories
include operating platforms, running processes, bi-
nary modules, and functions.

Exploitation properties can be used to provide an
alternative understanding of an application’s attack
surface from the perspective of which areas would be
most trivially exploited. This can allow an attacker
to focus on finding security issues in code that would
be more easily exploited. Likewise, a defender can
draw the same conclusions and direct resources of
their own at reviewing the associated code. It may
also be possible to use this information to augment
existing mitigations or to come up with new miti-
gations. A contrived example based on the form of
the ANI vulnerability was used to illustrate an auto-
mated approach to extracting exploitation properties
and using them to help identify a constrained subset
of regions of code that meet a specific criteria. Fu-
ture research will attempt to better define the extent
of exploitation properties and their uses.
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